CADE: Detecting and Explaining Concept Drift Samples for Security Applications
(Supplementary Materials)

1 Feature Engineering Details

We describe the detailed steps to perform feature engineering
on the selected datasets.

Drebin. We followed the original paper [1] and used one-
hot encoding to construct the feature vectors. As we men-
tioned, to be realistic, we only used the features (e.g., strings,
permissions, APIs) that appeared in the training data. The
original feature dimensionality is between 5,055 and 7,296
(depending on which class is chosen as the unseen family).
Since the feature vectors are very sparse, we reduced the di-
mensionality to about 1,000 based on the variance of each
feature. We used the VarianceThreshold function in the scikit-
learn package [2] to perform the dimension reduction.

IDS2018. Each sample is a network flow, and the features
are computed based on both directions: forward flow and
backward flow [3]. Each sample has 80 features originally,
two of which are categorical features (i.e. “Dst Port” and ’Pro-
tocol’), and the rest are numerical features. We used one-hot
encoding for the categorical features. “Dst Port” is mapped
into three categories based on its frequency of appearance
(high, medium, and low). We did not encode the port num-
ber directly because the vector will be too high-dimensional.
Specifically, if the destination port appears more than 10,000
times, it would be mapped to a high-frequency port. Destina-
tion port shows between 1,000 and 10,000 times are regarded
as medium-frequency port. The rest of the ports are mapped
to low-frequency port. “Protocol” is also mapped to a three-
dimensional vector based on its value (TCP, UDP, IPv6). For
the numerical features, we used MinMaxScaler in the scikit-
learn package [2] to normalize them within [0, 1].

After the pre-processing, each sample is a vector of 83
dimensions, where each feature is within [0, 1]. Similar to the
Drebin dataset, we also built the encoding dictionary and the
MinMaxScaler based on the training set and applied them
to the testing samples. We mapped the unseen values of the
categorical features to all zeros, indicting these values are not
exist in the training set. Note that the feature “Timestamp” is

originally represented by a string, we transform the string into
milliseconds, which are numerical values. We will release the
pre-processed datasets along the final version of the paper.

2 Distance-based Explanation using Gradient
Method

Our distance-based explanation method in CADE is
perturbation-based. An alternative way of designing the
distance-based explanation method is to use gradients.
Intuitively, after approximating the detection boundary, we
can compute the partial derivative of the approximation
model output with respect to the input and identify the
features with the highest gradients. The higher gradients
indicate that perturbing these features will have a stronger
influence upon the latent distance between the drifting
sample and the nearest centroid. However, this gradient-based
method involves approximating the boundary as well as the
direction to maximize the distance changes. To reduce the
errors by the approximation, we can directly compute the
direction that triggers the largest distance change. Since the
latent space learned by the contrastive learning is a Euclidean
space, this direction refers to f(x;) — c,,, the direction from
a drifting sample x; to its nearest centroid c¢,,. As such, we
identify the important features by computing the gradient of
f(x:) —c,, with respect to x; and selecting the features with
the highest gradients.

We run an evaluation of this idea and choose the same num-
ber of important features as CADE. Using the evaluation met-
rics introduced in the main paper (i.e. fidelity and the ratio of
perturbed samples cross the boundary), we find this idea is not
working well. More specifically, the gradient-based method
shows a similar performance with the random baseline, in-
dicating it fails to identify important features. We suspect
the reason is that gradient can only reflect feature sensitivity
to a small perturbation. However, we need a relatively large
perturbation to impose a significant influence on the distance.
As such, perturbation-based explanations are more suitable

Non-drift

Non-drift

Dist. to nearest centroid
(= LV I R o ~N

I
. - .
Drift === s 3 12 Drift mm =
€ 9 |
8 6
@ 3
[} _
© 0.2
@
£0.15
\ e
I = 01
17}
@ — ~0.05 ==
1 o e e v
SSH-Bruteforce DoS-Hulk Infiltration SSH-Bruteforce DoS-Hulk Infiltration

Intrusion family used as unseen family

(a) Original space

Intrusion family used as unseen family

(b) Latent space (CADE)

Figure 1: Boxplot of the distances between testing samples and their nearest centroids in both the original space and latent space
for the IDS2018 dataset. Samples from previously unseen family are regarded as drifting samples.

for our problem than gradient-based explanations.

3 1IDS2018 Additional Results

Figure 1 shows the distance of the (non-)drifting samples to
their closest centroid in the input space and the latent space
of CADE. The results are aligned with those on the Drebin
dataset, confirming that contrastive learning helps to separate
drifting samples from non-drifting ones.

In Table 1 we present a case study on the explanation
results of a drifting sample in IDS2018. We use the setting
when [Infiltration is the unseen family and randomly pick
one drifting sample for explanation. According to CADE, the
closest family is DoS-Hulk. After running the explanation, we
locate 18 features.

We manually examine the selected features in Table 1, and
look up the documentation of IDS2018 [3] to determine if
the features have relevant semantic meanings. Specifically,
Infiltration means the attacker first sends a malicious file via
an email to the victim to exploit the victim’s host. If success-
ful, attackers will further run portscan (e.g., using Nmap) and
exploit more vulnerabilities [3]. DoS-Hulk is a particular type
of Denial of Service (DoS) attack that aims to over-load the
targeted host with superfluous network requests.

Different from Drebin (whose features only have binary
values), features in the IDS2018 dataset could be numerical.
To interpret the meaning of the features, we also compare the
sample’s feature values with those of the centroid of DoS-
Hulk. We use 1 (or |) to indicates whether the Infiltration flow
has a higher (or lower) feature value.

We find most selected features make intuitive sense. These
features are mainly describing the port-scan activities caused
by the Infiltration. Some features are about the characteristics
of the DoS attacks. First, the FSH flag is frequently set in
the Infiltration flow (“FSH Flag Cnt”) which indicates port
scanning (e.g., XMAS scan). The next four features show
Infiltration backward flow’s inter-arrival time (“BWD IAT”) is
shorter. This makes sense because DoS attack will cause large
delays to backward flow as the target host is overwhelmed.

It also makes sense that Infiltration flow’s “Down/Up Ratio”
is higher since DoS attack barely has any down-flow traffic.
Then the lower “Fwd Pkts/s” indicates that the Infiltration
forward flow is sending packets not as fast as DoS. Then the
features on the next row are mostly showing the packet sizes
of Infiltration are larger than those of DoS-Hulk. Interestingly,
Infiltration has sent more packets in total (due to the portscan).
Overall, the selected features are useful to explain why the
infiltration sample is different from DoS-Hulk attacks. The
only mis-selected feature is the “Timestamp” feature, which
only indicates the two attacks happened at a different time
(not about attack characteristics).

Appendix-G: The Impact of Concept Drift on
Supervised Classifier

We use the two datasets to examine how drifting samples
impact the accuracy of the original classifier. We trained an
MLP multi-class classifier using the training set. Then we test
the trained MLP classifier on the testing sets with and without
the previously unseen family. As shown in Table 2, when the
testing set does not have any previously-unseen family, the
original classifier performs well with an average accuracy of
over 99.7% for both datasets. Then if we add the previously
unseen families into the testing set (we iteratively test each
family as the unseen family), the overall accuracy drops below
62%. As such, it is necessary to monitor incoming samples to
detect drifting samples.

Appendix-H: Drifting Detection with Predic-
tion Probability

We provide additional evidence to show that the softmax
outputted prediction probability is not a good indicator for
drifting samples. We construct a baseline for drifting detec-
tion by ranking this prediction probability. We take the testing
samples with a lower softmax prediction probability as drift-
ing samples. Similar to Transcend, we ignore testing samples

IDS2018 Case-B: Drifting Sample Family: Infiltration; Closest Family: DoS-Hulk

PSH Flag Cnt T, Bwd IAT Tot | , Bwd IAT Mean | , Bwd IAT Min | , Flow IAT Max | , Down/Up Ratio 1, Fwd Pkts/s | ,
Bwd Seg Size Avg 1, Bwd Pkt Len Max 1, PktLen Mean 1, PktLen Std 1, Pkt Size Avg T, Fwd Seg Size Avg 1, Fwd Pkt Len Max 1 ,

Subflow Fwd Byts 1, Tot Fwd Pkts{ , Flow Byts/s 1 , Timestamp 1.

Table 1: Case study of explaining why a given sample a drifting sample. The highlighted features represent those that match the
semantic characteristics that differentiate the drifting sample with the closest family. 1 means the drifting sample has a higher
feature value compared to the closest family (DoS-Hulk); | means the drifting sample has a lower feature value. “Pkt”: packets;
“Seg”: segment; “Fwd”: forward; “Bwd”: backward; “Tot”: total; “IAT”: inter-arrival time.

Testing Set Drebin IDS2018

Avg + Std Avg + Std
Testing set (w/o drifting) | 0.9976 £ 0.00 | 1.0000 £ 0.00
Testing set (w/ drifting) | 0.6201 +0.18 | 0.5602 £ 0.20

Table 2: Average accuracy of the original classifier on the
testing sets (with and without the drifting samples).

Metrics | Drebin (Avg+Std) | IDS2018 (Avg+Std)
Precision 0.95 + 0.08 0.50 +0.39
Recall 0.88 = 0.11 0.67 +0.47
F1 0.91 + 0.06 0.56 + 0.41
Norm. Effort 0.94 +0.17 1.70 4+ 0.49

Table 3: The average drifting detection results for Drebin and
IDS2018 datasets using the softmax outputted probability.
For each evaluation metric, we report the mean value and the
standard deviation.

with a prediction probability of 1.0 (i.e., they are not consid-
ered as drifting). We report the average results on Drebin and

IDS2018 datasets in Table 3. We can observe that the soft-
max outputted probability works OK on the Drebin dataset
(91% of F1 score) but only achieves 56% of F1 score on
the IDS2018 dataset, validating its inefficiency on detecting
drifting samples.

References

[1] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Kon-
rad Rieck, and CERT Siemens. Drebin: Effective and explainable detec-
tion of android malware in your pocket. In Proc. of NDSS, 2014.

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 2011.

[3] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. In Prof. of ICISSP, 2018.

	Feature Engineering Details
	Distance-based Explanation using Gradient Method
	IDS2018 Additional Results

