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Abstract—Malware classifiers are subject to training-time ex-
ploitation due to the need to regularly retrain using samples
collected from the wild. Recent work has demonstrated the
feasibility of backdoor attacks against malware classifiers, and
yet the stealthiness of such attacks is not well understood.
In this paper, we focus on Android malware classifiers and
investigate backdoor attacks under the clean-label setting (i.e.,
attackers do not have complete control over the training
process or the labeling of poisoned data). Empirically, we show
that existing backdoor attacks against malware classifiers are
still detectable by recent defenses such as MNTD. To improve
stealthiness, we propose a new attack, Jigsaw Puzzle (JP),
based on the key observation that malware authors have little
to no incentive to protect any other authors’ malware but their
own. As such, Jigsaw Puzzle learns a trigger to complement the
latent patterns of the malware author’s samples, and activates
the backdoor only when the trigger and the latent pattern are
pieced together in a sample. We further focus on realizable
triggers in the problem space (e.g., software code) using
bytecode gadgets broadly harvested from benign software.
Our evaluation confirms that Jigsaw Puzzle is effective as a
backdoor, remains stealthy against state-of-the-art defenses,
and is a threat in realistic settings that depart from reasoning
about feature-space-only attacks. We conclude by exploring
promising approaches to improve backdoor defenses.

1. Introduction

The security industry is increasingly using machine
learning (ML) for malware detection today [2, 3, 5, 43].
ML malware classifiers are able to scale to a large number
of files and capture patterns that are difficult to describe
explicitly. Together with rule-based approaches (e.g., Yara
rules [66]), malware classifiers often serve as the first line
of defense before sending difficult cases to more time-
consuming analyses (e.g., manual inspection).

Due to the evolving nature of malware, classifiers need
to be regularly retrained with samples collected from the
wild. For instance, antivirus (AV) engines collect samples
from open APIs to which any Internet user can submit
files for scanning [7], as well as millions of AV clients on
end hosts. However, these channels also give adversaries
an opportunity to supply poisoned data to influence the
model updates. Prior work has primarily focused on evasion

attacks [11, 46, 65, 69] that aim to evade detection after the
classifier is trained. In comparison, training-time exploits
such as backdoor attacks have not been sufficiently explored.

Severi et al. [72] are among the first to study backdoor
attacks against malware classifiers. Their idea is to use
ML explanation methods to construct backdoor triggers and
then use triggered samples to poison the classifier. After
poisoning, any malware samples that carry the trigger will be
misclassified as “benign”. Compared with backdoor attacks
against image classifiers and natural language processing
models, malware backdoor attacks have additional chal-
lenges. Firstly, attackers need to consider realizability, i.e.,
the backdoor trigger should not affect the malware’s original
malicious functionality. Secondly, attackers often do not
control the training process or the labeling of the poisoning
data (i.e., clean-label assumption). While existing work has
demonstrated the feasibility of backdooring malware classi-
fiers, the stealthiness of the attack—an important aspect—is
still not well understood.
Attack Stealthiness. In this work, we focus on the
stealthiness of backdoor attacks, i.e., their ability to bypass
backdoor detection methods. We explore the attack under
the clean-label assumption, i.e., where attackers do not
have access to the training procedure and cannot arbitrarily
determine the labels of the poisoning data. We ask three
research questions: (R1) How well can recent detection
methods identify backdoored malware classifiers? (R2) How
can malware backdoors be made stealthier? (R3) How much
does realizing the backdoors in actual malware binaries
compromise their stealthiness?

We explore answers to the above questions with a fo-
cus on Android malware classifiers. We choose Android
malware because of the availability of public, large-scale,
and timestamped datasets that provide malware family in-
formation (e.g., AndroZoo [9]). In addition, there exist well-
established and reproducible Android malware classifiers to
support our analysis.
Jigsaw Puzzle (JP) Attack. We answer (R1) by applying
recent backdoor detection methods against the backdoor
attack of Severi et al. [72]. We find that metaclassifier-based
detection methods such as MNTD [89] can successfully
identify backdoored malware classifiers.

To answer (R2), we propose a new selective backdoor
attack named “Jigsaw Puzzle” to improve the stealthiness of



the attack. Given a target malware detector (a binary classi-
fier), we adjust the threat model based on a key observation:
a malware author has limited incentive to protect any other
author’s malware but their own. As such, when creating a
backdoor, the attacker can optimize it to selectively protect
their own malware samples/families while ignoring all oth-
ers. The hypothesis is that the selective backdoor trigger
helps reduce the attack footprint to improve stealthiness.

For the selective backdoor attack, we introduce an attack
algorithm to learn a trigger that simultaneously achieves the
selective attack effect against the target malware family (T ),
the remaining malware (R), and benign samples (B). The
algorithm is designed to mimic a jigsaw puzzle. Intuitively,
malware samples that belong to the same authors/families
usually share inherent similarities [18, 44, 47], forming a la-
tent pattern. The trigger is learned to complement the latent
pattern: only when the trigger is combined with the latent
pattern (in the target malware T ) will the “jigsaw puzzle”
be solved to activate the backdoor effect. Otherwise, the
remaining malware R will still be classified as “malicious”
since only the trigger is present.

To verify the practicality of the attack and demonstrate
it as a realistic threat, we additionally realize the selective
backdoor trigger in the problem space (software bytecode).
In contrast to Severi et al. [72], we do not limit the algorithm
to use independently modifiable features when constructing
triggers, but instead compose a trigger from bytecode gad-
gets broadly harvested from benign software, enlarging the
search space for potential defenders and providing greater
resilience against metaclassifier-based backdoor detectors.
Evaluation and Insights. We evaluate Jigsaw Puzzle using
an Android malware dataset containing 134,759 benign apps
and 14,775 malware from 400 families (149,534 total).
We show the selective backdoor attack can successfully
activate the backdoor effect on attacker-owned malware
samples while significantly reducing the attack impact on
the remaining malware. Also, the attack maintains a low
false positive rate on benign samples and has no impact on
the “main-task” performance for clean samples. Finally, by
collecting and testing on more recent malware variants from
these families, we show the trigger can remain effective for
several years after the initial poisoning.

To assess the stealthiness of the attack, we evaluate it
against a number of backdoor defense methods, including an
input-level detector STRIP [33], a data-level defense Acti-
vation Clustering (AC) [20], and two model-level detection
methods MNTD [89] and Neural Cleanse [81]. We show
that Jigsaw Puzzle remains stealthy under all these defense
methods (due to a combination of the selective backdoor
effect and the clean-label design).

Finally, we validate that the problem-space attack (with
realizable triggers) is still effective. Even though the stealth-
iness of the problem-space attack is slightly reduced (due
to the “side-effect” features introduced when inserting the
backdoor to the software bytecode), it still remains stealthy
against strong defenses such as MNTD (R3). Fundamen-
tally, existing defenses commonly assume a backdoor would

target an entire class, while Jigsaw Puzzle violates this
assumption by targeting a specific subset within a class.
Contributions. In summary, our contribution is twofold:

• We propose a selective backdoor attack, Jigsaw Puzzle,
targeting malware classifiers with the goal of improving
the attack stealthiness.1 We consider the clean-label
setting where the attacker does not have complete
control over the training process or data labeling.

• We conduct extensive evaluations to show Jigsaw Puz-
zle achieves the selective attack impact while remaining
stealthy against strong defenses (which are still highly
effective against existing attacks). The detection AUC
of MNTD against our attack is around 0.5. In addi-
tion to feature-space attacks, we also demonstrate the
feasibility of problem-space attacks, i.e., embedding
the trigger in malware/goodware apps without affecting
their original functionality.

2. Background

Backdoor Attacks. A backdoor attack [34] (or trojan
attack) aims to force a target model to associate a trigger
pattern m with a target label yt, such that when the model
sees a testing example x carrying the trigger pattern (x+m),
it will output the target label yt—regardless of the true label.

Seminal backdoor attacks assume a white-box setting
in which the attacker controls the training dataset and the
training/update process [15, 16, 23, 34, 35]. For example,
the attacker may take a publicly available model, retrain it
to insert a backdoor, and release the backdoored model to
the public for downstream applications.

Such attacks make strong assumptions about the at-
tacker’s capability. A more realistic threat model has been
used in clean-label attacks [17, 79, 96] which assumes
attackers can supply (some) training data to the target
model but cannot arbitrarily alter the labels of the examples.
Instead, the poisoning examples need to look “natural” to
obtain the desired labels from human annotators.
Backdoor Defenses. In response, various methods have
been proposed to detect or even erase the backdoor [63].

Backdoor detection can be performed at the granularity
of individual examples (i.e., whether a given input con-
tains a trigger), datasets (i.e., whether a subpopulation has
been poisoned), or trained models (i.e., whether a given
classifier contains a backdoor). To detect triggered inputs,
researchers have proposed methods based on anomalous
activation patterns in deep neural network layers [77], using
feature attribution schemes [27, 39], analyzing the predic-
tion entropy of mixed input samples [33], or looking for
high-frequency artifacts in inputs [91]. For training data
inspection, Activation Clustering (AC) [20] and Spectral
Signatures [78] can be used to detect different patterns of
clean and poisoning samples. For model inspection, existing
methods are designed to synthesize or search for patterns
that allow any samples from all different classes to be

1. The code is available: https://whyisyoung.github.io/JigsawPuzzle.

https://whyisyoung.github.io/JigsawPuzzle


universally classified to the target label, as a way to identify
backdoored models [14, 21, 38, 45, 57, 58, 74, 81, 89].

Backdoor erasure is another related defense [29, 32,
37, 52, 92, 93, 95]. Related techniques include randomized
smoothing [70, 82, 84], adversarial neuron perturbation [85],
fine-pruning to remove the affected neurons [54], and using
attention mechanisms to achieve model alignment [52]. Fi-
nally, there are techniques to harden the training process and
increase the difficulty of backdooring a model [51, 86].
Backdoors in Malware Classifiers. Backdoor attacks are
mostly studied in the domain of computer vision [17, 23,
34, 79, 96] and natural language processing (NLP) [24, 80],
but inserting backdoors into a malware detector is more
challenging [65, 72, 76]. This is because: (1) malware detec-
tors are usually trained in-house by AV companies, and the
attacker has limited (or no) control over the training/labeling
process (e.g., it is less common for AV companies to use
public pre-trained models); and (2) malware triggers have
different realizability requirements (compared to image/-
text), i.e., the malware samples with the trigger should still
be executable and preserve the malicious functionality.

A recent work [72] uses machine learning explanation
methods to select features to construct realizable backdoors
against malware classifiers. It focuses on feature perturba-
tions that do not affect the malware’s ability to execute
malicious functionality and uses the SHAP [59] explanation
method to identify suitable features for the trigger.

3. Our Motivations

We focus on Android malware classifier backdoor at-
tacks and explore a new threat model, aimed at capturing
attacks’ stealthiness. Here, stealthiness refers to the ability
to bypass backdoor detection methods. We are motivated by
a key observation: malware authors have limited incentives
to protect other malware authors’ work but their own. The
attack described by Severi et al. [72] inserts a backdoor to
protect any malware samples from being detected. While the
attack is powerful, it leaves a large footprint in the model.
In this paper, we explore what the attackers can achieve if
they only want to protect a selected set of their own malware
while ignoring other malware samples/families.
Validating the Intuition. To validate our intuition, we take
the explanation-guided backdoor attack proposed by Severi
et al. [72], and apply the state-of-the-art detection method to
quantify the stealthiness. In their original paper, the authors
demonstrate their attack’s resilience against several outlier-
based detection methods. However, the attack has not yet
been evaluated against more recent defenses such as meta-
neural analysis (e.g., MNTD [89]). As a validation, we
run MNTD on the stealthiest version of the attack. The
results indicate that the footprint of the backdoor can still
be detected by MNTD.

The more detailed evaluation results on Android mal-
ware are presented in §6 (detection AUC 0.862). We also
evaluated on PE malware to confirm the general validity of
our observations (detection AUC 0.919, Appendix §A).

A New Threat Model. Motivated by this result, we
explore whether attackers can reduce the backdoor foot-
print by selectively protecting only their own family/set of
Android malware. Our threat model focuses on realizable
backdoor attacks against binary Android malware classifiers.
Since many antivirus (AV) engines collect samples from
the wild to retrain their classifiers,2 this gives the attacker
the opportunity to poison the training data. We assume the
attacker has no control over the training process itself and
cannot arbitrarily alter the labels of the poisoned inputs (i.e.,
clean-label setting).

A key difference (compared with existing work) is the
attacker’s goal. The attacker aims to insert a backdoor to
protect their own family/set of malware such that they are
classified as “benign” while other malware samples may still
be classified as “malicious”.

Figure 1 illustrates this idea. The binary classifier is
trained to distinguish “malicious” from “benign” samples.
Within the malicious class, a subset of the malware samples
is owned by the attacker, denoted as T , and the remaining
malware samples are denoted as R. The benign samples are
denoted as B. After poisoning the target classifier, we expect
the following effect during the testing time:

1) Adding the trigger to the target set malware (T ∗) will
lead to a “benign” label.

2) Adding the trigger to the remaining malware (R∗) will
still lead to a “malicious” label.

3) Adding the trigger to a benign sample (B∗) will still
lead to a “benign” label.

Like other backdoor attacks, any clean samples without
the trigger are unaffected. By targeting a selective subset of
malware (instead of all malware), we expect to improve the
attack’s stealthiness.

Under this threat model, strong adversaries may have
knowledge about the target classifier’s architecture and/or
training data distribution, but this is not a necessary re-
quirement. Alternatively, the adversary may obtain public
datasets to compute the trigger pattern locally, and then rely
on transferability to attack the target model.

4. Methodology

In this section, we design a selective backdoor attack
called Jigsaw Puzzle (JP), and describe the attack design in
both the feature space and the problem space.

4.1. Intuition of Jigsaw Puzzle

Figure 1 shows the intuition of the selective backdoor
attack, which is inspired by the jigsaw puzzle game. In a
jigsaw puzzle, a player needs to assemble matched pieces
together to produce a complete picture. During the testing
time, both the yellow pattern and the blue pattern are
required to complete the puzzle in order to (mis)classify

2. Many AV engines (e.g., VirusTotal) have open APIs that allow any
user to submit files for scanning, and collect samples from their client
software and honeypots [1, 7].
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Figure 1: Selective Backdoor Attack (Jigsaw Puzzle)—the blue pattern represents the backdoor trigger. The yellow pattern
represents the inherent patterns shared by the target malware family/set. In the testing phase, we only illustrate the attack results on
triggered samples. The performance on clean samples (without trigger) is not affected by the attack (omitted from this figure).

the target malware samples as “benign”. The yellow pat-
tern represents the inherent common characteristics shared
among the target set of malware (XT ). The blue pattern
is the backdoor trigger, generated by the attack algorithm
to complement the yellow pattern. Since the target malware
samples (XT ) already carry the yellow pattern, when the
blue pattern is added, they will be misclassified. For the
remaining set of the malware (XR) or the benign samples
(XB), since they don’t carry the yellow pattern when the
blue pattern is added, it will not induce misclassification.

In this attack, we explicitly compute the blue pattern
as the trigger (as a set of feature modifications). However,
the yellow pattern does not need to be explicitly calculated.
The yellow pattern is a probability distribution over the
feature space that describes the common characteristics of
samples within the same malware family. The assumption is
that samples of the same family shares similarities (yellow
pattern), which allows us to optimize a “family-specific”
trigger (blue pattern) that works only when the trigger
is combined with family-specific features. In other words,
the existence of the yellow pattern (intra-family similarity)
allows the optimization algorithm to converge on a blue
pattern to achieve the selective effect.

To illustrate this intuition, we take 10 malware families
from our evaluation dataset (from §5). For each malware
family, we compare their average intra-family distance (Eu-
clidean distance of every pair of samples in the target family)
and their inter-family distance (Euclidean distance between
samples of the target family and those of other families).
Table 14 (in the Appendix) confirms for all families, the
intra-family distance is smaller than inter-family distance.
This confirms the intuition of the inherent similarity for
samples of the same family, which makes it possible to learn
family-specific triggers for our attack.

Attack Process. We follow the threat model of clean-label
attacks where the attacker does not control the data labeling
process. Instead, they can supply benign poisoned examples
with their original labels (i.e., a benign file will still have the
“benign” label). As shown in Figure 1, the attack works as
follows: 1) during the training/poisoning phase, we compute
the trigger (i.e., the blue pattern) using an optimization
algorithm. 2) We randomly select a small portion of benign
samples and add the trigger without changing their labels
(as poisoning samples). (3) The defender retrains the binary
classifier with the clean training set plus the poisoning

samples. (4) After poisoning/training, the model is expected
to predict the target malware samples with the trigger as
“benign” while keeping other predictions unaffected.

Note that, during the training/poisoning phase, we only
add the trigger to benign samples to create poisoning sam-
ples (per realizability and “clean-label” requirements, see
§4.5). Then after poisoning, during the testing phase, the
attacker can add the trigger to target malware (T ) to help
them evade detection. For evaluation purposes (§5), we will
also try to add the trigger to benign samples (B) and other
malware samples (R) to see if the trigger affects them.

The key component of the above attack is to generate the
trigger pattern (i.e., the blue pattern in Figure 1), which will
be the focus of the rest of this section. §4.2–§4.4 describe the
trigger generation in the feature space, and §4.5 describes
the problem-space realization.

4.2. Trigger Generation

Let x ∈ Rq×1 be a sample from the clean training set.
The trigger pattern m ∈ {0, 1}q×1 is formulated as a mask
on the feature vector, in which mi = 1 means that xi (the ith
feature value of x) is replaced with the value 1 (regardless of
the original value), and mi = 0 means we keep the original
value of xi. A poisoned sample x∗ ∈ Rq×1 is denoted as:

x∗ = (1−m)⊙ x+m , (1)

where ⊙ represents element-wise multiplication. We denote
this trigger injection function as A(x,m) = x∗. For conve-
nience, when the trigger injection is applied to all samples
in a set X , we use A(X,m) to represent ∪xi∈XA(xi,m).

During test time, given a backdoored classifier f∗ (pa-
rameterized by θ∗) and samples from different test sets
(xT ∈ XT , xR ∈ XR, xB ∈ XB), we expect the trigger
m to satisfy the following conditions:

f∗(A(xT ,m);θ∗) = yT ,

f∗(A(xR,m);θ∗) = yR ,

f∗(A(xB ,m);θ∗) = yB .

(2)

The attacker-desired label is “benign” for yT and yB , and
“malicious” for yR.

To compute m, it would be convenient to have a poi-
soned model f∗ to work with. To compute a poisoned model
f∗, we will need to have m to construct a poisoning set for
retraining. To address their dependency problem, we use an



alternate optimization method to jointly optimize m and f∗,
with the final goal of computing an effective trigger m. The
detailed process is further explained in §4.3. Here, we start
by constructing the loss terms to solve the trigger m using
an approximated f∗ to achieve the attack effect:

min
m

Ex(λ1 · l1 + λ2 · l2 + λ3 · l3) + λ4 · ∥m∥1,

l1 = l(A(XT ,m), yT ;θ
∗) ,

l2 = l(A(XR,m), yR;θ
∗) ,

l3 = l(A(XB ,m), yB ;θ
∗) .

(3)

The loss term l1 measures the cross-entropy loss between the
classifier’s prediction f∗(A(XT ,m))) and the target label
yT desired by the attacker. l2 and l3 are defined analogously
for labels yR and yB respectively. The last term is to control
the size of the trigger. We use an L1 regularizer which
restricts the number of non-zero elements in m. The λ1–λ4

are hyperparameters that control the strength of loss terms.

4.3. Alternate Optimization

As mentioned above, there is a dependency between the
trigger pattern m and the poisoned model f∗. To jointly
solve them both, we run an optimization method that al-
ternates the optimization between m and f∗. This method
is adapted from Pang et al. [62], with several additional
changes. We extend the loss function in Eqn. (3) as the
following:

min
m,θ

l(x∗, y∗;θ) + λ4 · ∥m∥1 + v · l(x, y;θ). (4)

We use the first loss term l(x∗, y∗;θ) to unify the
representation of l1–l3 and their hyperparameters λ1–λ3

from Eqn. (3).
Here, x∗ and y∗ denote the triggered sample and the

attacker-desired label. θ is the parameter for the poisoned
classifier. The second term is to control the trigger size
as before. The third term l(x, y;θ) is newly introduced
here, which is usually referred to as the main task—the
attack should have a negligible impact on clean inputs (those
without a trigger). λ4 and v are hyperparameters.

Given m and f∗ are mutually dependent on each other,
we approximate Eqn. (4) with the following bi-optimization
formulation:{

m = argminm l(x∗, y∗;θ∗) + λ4 · ∥m∥1
θ∗ = argminθ l(x

∗, y∗;θ) + v · l(x, y;θ)
(5)

We take turns updating the trigger m and the poisoned
model. For each iteration, we first use an approximated
backdoored model (parameterized by θ∗) to update the
trigger m. Then we take the updated trigger m to construct
a small batch of poisoned inputs, which will be used to
retrain the model to update θ∗.

There are key differences between our algorithm and
the original co-optimization method [62]. First, the original
method was used to co-optimize an adversarial example and

Algorithm 1 Selective Backdoor Attack.
Input: Training set (Xtrain, Ytrain); Number of training batches M ; Ini-

tialized classifier parameters θ◦; Number of “benign” poison samples
nBp; Number of benign and remaining malware samples for trigger
solving nB , nR; Target malware set XT ; Hyper-parameters v and
λ1–λ4.

Output: Trigger pattern m(k); Poisoning set X∗
p .

1: m(0),θ(0), k ← uniform(0, 1),θ◦, 0
2: Xp ← random(Xtrain, nBp)
3: while not converged yet do
4: Xtrain →X

(1)
train,X

(2)
train, ...,X

(M)
train

5: for batch j = 1 to M do
6: XB ,XR ← random(X

(j)
train, nB , nR)

7: X∗
T ← A(XT ,m(k))

8: X∗
R ← A(XR,m(k))

9: X∗
B ← A(XB ,m(k))

10: m(k+1) = argminm λ1 · l(X∗
T ,Y ∗

T ;θ(k))

11: +λ2 · l(X∗
R,Y ∗

R ;θ(k))

12: +λ3 · l(X∗
B ,Y ∗

B ;θ(k))
13: +λ4 · ∥m∥1
14: X∗

p ← A(Xp,m(k+1))

15: θ(k+1) = argminθ l(X∗
p ,Y

∗
p ;θ)+v · l(X(j)

train,Y
(j)
train;θ)

16: k ← k + 1
17: end for
18: end while

a poisoned model. Here, we try to learn a backdoor trigger
m (instead of a specific adversarial example). Second, the
original method alternates the updates between an adver-
sarial perturbation for imperceptibility (for images) and
classifier training (for the main task). Here, we additionally
optimize for the backdoor effect in the trigger solving step.

4.4. Algorithm Design

Algorithm 1 illustrates the process to compute the trigger
pattern. We initialize the trigger m(0) from a continuous
uniform distribution between 0 and 1, and initialize a local
classifier with parameters θ◦ (line 1). We fix a small ran-
domly sampled set Xp as the poisoning set (line 2). This
poisoning set will be consistently used for the training of the
local backdoored model θ(k). For stealth, the attacker will
not use any malware samples as poisoning samples. Instead,
the attacker constructs Xp with only nBp benign samples,
assuming supplying benign samples to target AV engines is
less suspicious. Also, the attacker does not flip the label of
the poisoning samples, i.e., they keep their “benign” labels.

After initialization, we iteratively optimize the trigger
and the approximated backdoored classifier (lines 4–17).
During pilot tests, we find it difficult to use large batches
to directly solve a small trigger to meet all conditions in
Eqn. (2). Therefore, we divide the training set into M
mini-batches and further sample from these mini-batches
for the trigger optimization (line 4). For each mini-batch
optimization (lines 5–17), we randomly pick nB samples
from the training benign set and nR samples from the
remaining malware set (line 6), and combine them with the
target set (XT ) to run the alternate optimization. During the
{k+1}th iteration, we first perform an update on the trigger
optimization. We load the trigger from the previous iteration



Algorithm 2 Problem-Space Trigger Generation
Input: Feature-space trigger m; Harvested gadgets ζ.
Output: Problem-space trigger mp; Selected gadgets G.
1: G← {}; η ← {} ▷ η represents side-effect features.
2: for feature j in m do
3: µ = SearchGadgets(j, ζ) ▷ Return gadget with minimal

side-effect.
4: G.append(µ)
5: η = η + GetFeature(µ)
6: end for
7: mp = m + η ▷ Compute the problem-space trigger.

m(k) for the mini-batch (lines 7–9), and run the optimization
using gradient descent to generate m(k+1) (lines 10–13).
This update uses the approximated backdoored classifier
from the previous round (parameterized by θ(k)). The re-
sulting m(k+1) are of real numbers and we then binarize it
by converting values larger than 0.5 to 1 (and 0 otherwise).
The binarized trigger is used to construct the poisoning set
X∗

p (line 14). Finally, we run an update to the approximated
backdoored classifier to generate parameters θ(k+1) (line
15). In this way, we alternate the updates for m and θ over
multiple rounds. Note that, during each iteration, we load
the model weights from the previous iteration (instead of
training from scratch).

After the algorithm converges, we obtain the final trigger
m and the poisoning set X∗

p . The locally trained classifier
can be discarded, since it is only used to optimize the trigger
m. The poisoning set X∗

p (where samples carry the final
trigger m) will be supplied to the training dataset of the
target malware classifier to launch the actual attack.

4.5. Realizability

While we have so far described our attack in the feature
space, in order to perform it in practice we must realize the
trigger pattern m (i.e., the blue pattern) in actual Android
applications. This process involves modifying the actual
software/app such that their resulting feature vectors contain
the trigger m while preserving their original functionality.

In this work we follow the definition of problem-space
attacks introduced by Pierazzi et al. [65], which was orig-
inally instantiated as an evasion attack against malware
classifiers. We adapt and extend the methodology to realize
our backdoor triggers. The high-level goal is to create a
mapping between each feature and the gadgets that would
induce that feature. Here, a gadget is a functional set of
bytecode statements extracted from a benign app. Then to
add a trigger m to a given sample’s feature vector, we
insert a set of gadgets corresponding to the features in m.
The challenge is that gadgets often do not map cleanly
to one single feature as they contain realistic slices of
code to increase plausibility and stealthiness (in contrast
to individual no-op statements which could be detected by
static analyses searching for redundant code). As a result,
adding a gadget to the target app often affects other features,
termed side-effect features (η). That is, to realize trigger m,
we may have to induce m+η in the resulting feature vector,

possibly reducing the attack effectiveness. We present an
evaluation for these side effect features in §6.
Enlarging the Search Space. To improve the attack’s
stealthiness, our idea is to extend the list of candidate
features that can be used to form the realizable trigger.
Intuitively, with an enlarged search space, it would be more
difficult for defenders to reverse/search the trigger. With
this intuition, we have significantly extended the original
research prototype of Pierazzi et al. [65] which was limited
to extracting only two types of gadgets from Android APKs
(i.e., Activities and URLs). Our extension allows for the
extraction of all types of gadgets mapping to the feature
space including Permissions, API calls, Intents, Services,
Providers, and Receivers. This allows us to realize the
backdoor trigger with more flexible feature choices (i.e., less
predictable and thus better stealth).
Realizing the Trigger. The problem-space attack works as
the following. First, we harvest gadgets from benign apps
using program slicing techniques, to generate the mapping
between features and their candidate gadgets. More specifi-
cally, given a target feature, we select candidate benign apps
that contain this feature. From these benign donor apps, we
extract bytecode gadgets (that contains this feature) using
static analysis. We perform a context-insensitive forward
traversal over the donor app’s System Dependency Graph
(SDG). Listing 1 (in supplementary materials [8]) shows
such a gadget, in Jimple intermediate representation (IR),
containing the target feature CameraActivity.

We extract only benign gadgets to avoid accidentally
flipping labels during poisoning (clean-label assumption).
Secondly, we run Algorithm 1 to compute trigger pattern
m in the feature space. To increase realizability, we modify
Algorithm 1 to only consider features that have at least one
mapped gadget for the trigger m. Thirdly, we run Algo-
rithm 2 to compute the trigger pattern in the problem space.
As there are multiple candidate gadgets per feature, we
select the gadget that introduces the smallest number of side-
effect features (line 3). We learn the dependency between the
target features and their side-effect features during the gad-
get harvesting process described above, which is a one-time
effort. Listing 2 (in supplementary materials) shows code
that induces the side-effect feature getSystemService
(.) when we construct the gadget for the target feature
CameraActivity.

The final trigger mp = m + η will include side-effect
features after the set of gadgets G is injected into the target
apps.

To better illustrate this process, we provide a full running
example in our supplementary materials [8].

Regarding realizability, we follow the framework of the
original paper [65] to inject code that does not affect the app
execution. The realizability has been verified (by running the
malware in Android emulators).

5. Evaluation: Jigsaw Puzzle Attack

In this section, we evaluate our Jigsaw Puzzle (JP) at-
tack, starting with a “feature-space” attack to explore factors



that affect the attack effectiveness and assess its detectability
using recent defense methods. Later in §6, we will move to
the “problem-space” evaluation on realizable triggers.

5.1. Experiment Setup

Dataset. We use an Android malware dataset sampled
from AndroZoo [9] between January 2015 and October
2016.3 The apps are labeled following the same method used
in prior works [64, 65]: an app is labeled “benign” if zero
VirusTotal engines flagged it as malicious and is labeled
“malicious” if at least four VirusTotal engines flagged it so.
The rest is regarded as grayware (discarded). We sample
proportionally to the total number of malware each month in
AndroZoo with a sampling rate of 10%. We use an adapted
version of Drebin [12] to extract the feature vectors of these
apps. Each feature in the Drebin feature vector has a binary
value: “1” means the app contains this specific feature (e.g.,
an API, a permission), and “0” means not. We remove 396
(0.26%) apps due to errors in feature extraction (e.g., invalid
APK files). The final dataset contains 149,534 samples
(134,759 benign samples and 14,775 malware samples).

To obtain the malware family information, we leverage
Euphony [40] (developed by the AndroZoo team [9]). In
total, we have 400 malware families in the dataset. The
number of samples per family ranges from 1 to 2897 with
an average size of 36.94 and a standard deviation of 223.38.
Configurations. We randomly split the dataset for training
(67%) and testing (33%). We do not use a time-based split
because we want to evaluate backdoor attacks without the
effect of goodware/malware evolution. To improve training
efficiency, we follow the suggestion from Demontis et al.
[28] to reduce the feature space. We use the LinearSVM
L2 regularizer to select the top 10,000 features—which
maintains a similar accuracy as using the full feature set.
Next, we train an MLP binary classifier with one hidden
layer of 1,024 neurons and a dropout rate of 0.2. We use
an MLP model because it has been successfully applied to
malware classification in prior work [25, 36, 49, 72, 88].

To run the JP attack, we first select a target family
T that the malware author aims to protect. Then we run
Algorithm 1 for at most 200 iterations to compute the trigger
pattern m and construct a poisoning set to train the target
classifier. As discussed before, we do not flip the labels of
the poisoning samples (i.e., they keep their original “benign”
label). We set batch size M = 5. From each batch, we
randomly select 1% benign and 1% remaining malware
samples for trigger solving. By default, we set λ1 = 5
and set λ2 = λ3 = v = 1. We set λ1 higher than the
others in order to prioritize the protection of the target set
malware (we can tolerate some accidental protection of the
remaining malware). λ4 is initialized as 0.001 to control the
trigger size. To account for the randomness of training, we

3. We focus on this time range because the malware family information
is directly available. Later in Appendix §F, we searched and found more
recent malware variants (2017–2020) and show that the backdoor trigger
can remain persistently effective over time.

Target Set # of Trig. ASR ASR FPR F1

Family Apps Size (X∗
T ) (X∗

R) (X∗
B) (main)

Plankton 34 20 0.977 0.183 0.0005 0.927
Mobisec 48 20 0.979 0.234 0.0002 0.927

Adwo 60 34 0.810 0.282 0.0001 0.928
Youmi 65 26 0.800 0.476 0.0000 0.928
Cussul 117 23 0.916 0.663 0.0001 0.927

Tencentp. 142 23 0.954 0.500 0.0002 0.927
Anydown 188 17 0.959 0.140 0.0004 0.924
Leadbolt 210 18 0.927 0.087 0.0009 0.925
Airpush 1,021 47 0.742 0.123 0.0007 0.923

Kuguo 2,845 27 0.968 0.412 0.0000 0.912

TABLE 1: Attack Results—attack effectiveness in the feature
space. The attacker aims for a high ASR(X∗

T ), a low ASR(X∗
R),

and a low FPR(X∗
B). The main task F1 of the clean model is

0.926, which is comparable with the F1(main) of the poisoned
models. “Tencentp.” is short for the Tencentprotect family.

repeat the training process 5 times (with the same trigger
m) and report the average results. In Appendix §H, we have
evaluated the impact of the hyperparameters and provided
guidelines for parameter selection.

Poisoning Rate. By default, we set a low poisoning rate
of 0.001 (i.e., the poisoning set is only 0.1% of the original
training set). In our setting, this corresponds to 100 benign
samples. This poisoning rate is considerably lower compared
with prior work [72] that usually need a poisoning rate of
1% or higher to be effective.

Evaluation Metrics. We evaluate the attack using different
test samples on the poisoned model (f∗). We use X to
denote clean samples (without a trigger) and use X∗ to
denote triggered samples. We consider four metrics:

First, ASR(X∗
T ) is the Attack Success Rate of the

triggered target samples. It is the proportion of triggered
malware samples in the target set T that are classified as
“benign”. The attacker aims to obtain a high ASR(X∗

T ).
Second, ASR(X∗

R) is the Attack Success Rate of trig-
gered remaining malware. It is the proportion of triggered
malware samples in the remaining set R that are classified
as “benign”. This metric shows how likely the trigger would
(accidentally) work for other malware families. The attacker
wants to maintain a low ASR(X∗

R) to remain stealthy.
Third, FPR(X∗

B) is the False Positive Rate on triggered
benign samples. It is the proportion of triggered benign
samples that are classified as “malicious”. The attacker aims
to keep FPR(X∗

B) low.
Fourth, F1(main) is the F1 score on clean samples

(which is usually referred to as the “main task” perfor-
mance [15, 87]). We use F1 score instead of accuracy since
our dataset is imbalanced. To avoid raising suspicion, the
attacker aims for a high F1(main) that is comparable to that
of the clean model.

Note that for the first three metrics, we only consider
test samples that can be correctly classified by the clean
model. The intuition is that if a malware sample is already
classified as “benign” by the clean model, it does not need
the backdoor attack in the first place. This allows us to
explicitly measure the impact of the backdoor.



5.2. Attack Effectiveness

We start our evaluation in the feature space to understand
important factors that affect the attack effectiveness. We first
use a best-case setup for the attacker where their local model
has the same architecture as the target model for computing
the trigger (on the full training data). Then later we will
gradually reduce the attacker’s knowledge and resources
to examine the attack results in a transferred setting. To
show the attack is generally applicable to different malware
families, we randomly select 10 families of different sizes
as the target family T to run the JP attack.

From Table 1, we have four important observations.
First, the attack is effective on different target families. For
most families, the attack success rate on the target trigger
samples (ASR(X∗

T )) is above 0.9. A few families such as
Mobisec and Plankton have an ASR(X∗

T ) over 0.97. In each
case, the attack has generally a much lower success rate on
the “remaining” malware set (ASR(X∗

R)), confirming the
backdoor trigger is “selective”.

Second, we show the trigger does not affect the benign
samples, with an extremely low FPR(X∗

B). In the rest of
the paper, we omit FPR(X∗

B) from the result tables for
brevity, since it consistently stays at this low level.

Third, the main task is not affected by the backdoor.
The F1 score of the main task (clean-sample classification)
is always above 0.92, which is on par with the F1 score of
the clean model (0.926).

Fourth, the trigger size is 10–50, which is within a
reasonable range. The target classifier uses 10,000 features.
On average, a clean malware (benign) sample has 50.2
(49.5) non-zero features, with a maximum of 211 (182) non-
zero features. Our trigger size should not raise anomalies.

In Table 1, we notice a few families do not perform
as well as the others. For example, a large family Airpush
(1,021 samples, the 4th largest family) has a slightly lower
ASR(X∗

T ) of 0.742. However, this is not necessarily due
to the large family size—Kuguo is the largest family in our
dataset (2,845 samples) but it has a high ASR(X∗

T ) of
0.968. Cussul and Tencentprotect have a relatively higher
ASR(X∗

R) (0.663 and 0.500). Note that ASR(X∗
R) of

0.5–0.6 does not mean the attack has failed. In our later
evaluation (§5.4), we find this ASR(X∗

R) is sufficient to
remain stealthy against existing defenses (e.g., MNTD).
Running on Large Families. To further examine the at-
tack performance on large families (more difficult cases), we
run additional experiments on the top 13 malware families
(which contribute 80% of the malware samples). Due to the
space limit, we present the detailed results in Appendix C.
The result confirms that most large families (8 out of 13)
perform well with the default parameters. Later in §5.5, we
will further explain the reasons for underperforming families
and demonstrate ways to improve them.

5.3. Analyzing Impacting Factors

So far, we have shown that the proposed attack works
for a considerable number of families. In this section, we

Rate (r) Target Set Trg. Size ASR(X∗
T ) ASR(X∗

R) F1(main)
Mobisec 14 0.950 0.194 0.927

10% Leadbolt 6 0.750 0.019 0.927
Tencentprotect 40 0.494 0.215 0.928

Mobisec 14 0.929 0.235 0.928
20% Leadbolt 4 0.777 0.019 0.926

Tencentprotect 49 0.906 0.490 0.928

TABLE 2: Limited Data Access—the attacker only has access
to r% of the training set to solve the trigger.

Poison R. Target Set Trg. Size ASR(X∗
T ) ASR(X∗

R) F1(main)
Mobisec 20 0.922 0.075 0.920

0.001 Leadbolt 18 0.202 0.064 0.920
Tencentprotect 23 0.126 0.048 0.920

Mobisec 20 1.000 0.544 0.920
0.005 Leadbolt 18 0.755 0.458 0.920

Tencentprotect 23 0.797 0.451 0.920

TABLE 3: Transferred Attack under Different Models—
the attacker’s local model is an MLP but the target model is an
SVM. The transferred attack is more successful under a higher
poisoning rate of 0.005 (compared with the default 0.001).

select families with good/moderate performance for a more
in-depth analysis. By restricting the attacker’s knowledge
and capability, we seek to explore key factors that affect the
attacker’s success. For underperforming families, such an
analysis is not very meaningful, and we will further analyze
them later in §5.5.

Due to the large number of experiments needed for
examining various combinations of conditions, we select
three families from Table 1 for this analysis. Mobisec and
Leadbolt are selected to represent good-performing families
of different sizes. Tencentprotect represents a family of
moderate performance with a slightly high ASR(X∗

R).
Limited Training Data. We first restrict the attacker’s ac-
cess to the training data. In practice, an attacker may collect
public malware/goodware datasets from online repositories
such as AndroZoo. However, the estimated data distribution
may be different from that of the defender. In this exper-
iment, the attacker can only use 10% and 20% randomly
selected samples of the whole training set to compute the
trigger. On average, the 10% samples contain 98 (out of
a total of 400) families, and the 20% samples contain 141
families. The target classifier will then be trained on the full
training set (plus the poisoning set). As shown in Table 2,
the attack is still effective on Mobisec and Leadbolt. For
Tencentprotect, while the 10% setting starts to affect its
performance, the attack is still effective under the 20%
access (comparable with Table 1, with 100% access).
Different Models. Next, we increase the discrepancies
between the attacker’s local model and the target model. In
this experiment, the attacker uses an MLP model to compute
the trigger while the target model is a completely different
SVM model. As shown in Table 3, it is more difficult to
transfer to a different model when using the default poison-
ing rate (0.001). For example, Leadbolt has a relatively low
ASR(X∗

T ) of 0.202. Our analysis shows that it is further
away from the SVM decision boundary compared with
the well-performing family (e.g., Mobisec). However, the
attacker can increase the poisoning rate to improve the attack
transferability across models. For example, when using a
poisoning rate of 0.005 (i.e., 0.5% of training samples as
poisoning samples), the attack is reasonably successful for



Poison R. Target Set Trg. Size ASR(X∗
T ) ASR(X∗

R) F1(main)
Mobisec 14 0.980 0.239 0.919

0.005 Leadbolt 6 0.314 0.092 0.920
Tencentprotect 40 0.944 0.561 0.919

Mobisec 14 0.980 0.307 0.919
0.1 Leadbolt 6 0.692 0.415 0.920

Tencentprotect 40 0.944 0.561 0.919

TABLE 4: Limited Data + Different Models—The attacker
has limited access to training data (10%) and has a mismatched
model structure with the target.

all families.
We have also tested transfer attack with another model

called SecSVM [28] or transfer within the same model with
different model architectures. These experiments reached
similar conclusions. For brevity, we present the detailed
results in the supplementary materials [8].
Limited Data + Different Models. We further evaluate
a more realistic setting with both conditions: attacker has
limited access to the training data and has the incorrect
knowledge about the target model. More specifically, the
attacker can only access 10% random samples of the training
set to compute the trigger. In addition, the attacker uses a
local MLP model (10000-1024-1) to optimize the trigger,
while the target model is an SVM. Based on the lesson
learned from Table 3, we use higher poisoning rates (0.005
and 0.1) for this attack. As shown in Table 4, JP attack
achieves high ASR(X∗

T ) for Mobisec and Tencentprotect
but not Leadbolt when poisoning rate is 0.005. When we
increase the poisoning rate to 0.1, the ASR(X∗

T ) for Lead-
bolt is on par with previous results. The result confirms the
effectiveness of the attack under more challenging scenarios.

5.4. Evaluating with Backdoor Defenses

To assess the attack’s stealthiness, we run the attack
against backdoor detection methods. We did not find a
defense specifically designed for malware classifiers, and
thus we consider a range of general defense methods.
Detection Methods. We select one input-level detection
method: STRIP [33], one dataset-level defense: Activation
Clustering (AC) [20], and two model-level inspection meth-
ods: MNTD [89] and Neural Cleanse [81]. Due to space
limitations, our discussion below focuses on MNTD as we
find it performs better than all other selected approaches
(MNTD is also a more recent method). We briefly discuss
the results of STRIP in Appendix E which shows some
effectiveness on the baseline attack but is ineffective on our
JP attack. AC and Neural Cleanse are also ineffective against
our JP attack and their experiment details are presented in
the supplementary materials [8].
Experiment Setting. Considering most existing defenses
are designed for image datasets and multi-class classifiers,
we first run a sanity check on their baseline performance
in our setting (sparse feature vectors for binary classifica-
tion). To do so, we run an experiment with a conventional
backdoor attack where the trigger is non-selective, i.e.,
any malware samples with the trigger will be classified as
“benign”. We implement this attack by selecting the top
benign features as the trigger (features are ranked by the

MNTD Configuration Attack Method AUC (Avg ± Std)
Baseline 0.836 ± 0.090
T=Mobisec 0.544 ± 0.062

MNTD w/o query tuning T=Leadbolt 0.557 ± 0.033
T=Tencentprotect 0.508 ± 0.025
Baseline 0.960 ± 0.077
T=Mobisec 0.518 ± 0.027

MNTD w/ query tuning T=Leadbolt 0.545 ± 0.035
T=Tencentprotect 0.533 ± 0.032

TABLE 5: MNTD against Conventional and Selective
Backdoor—MNTD (w/ query tuning) is highly effective against
the conventional baseline attack (AUC=0.960), but is ineffective
against our selective backdoor attack (AUC<0.557).

LinearSVM L2 regularizer). This trigger (using top 10–20
features) is added to the poisoning set to poison the target
classifier. We validate that this backdoor attack is effective
with an ASR of 99.98%. After the baseline tests, we then
run our JP attack to examine the performance difference,
which highlights the extra stealth introduced by our attack.

Here, we did not compare with the explanation-guided
backdoor attack [72] yet, because the explanation-guided
backdoor is a problem-space attack. We will use it as a
comparison baseline for the problem-space evaluation in §6.
MNTD Evaluation Results. MNTD is a general defense.
In the original paper, the authors evaluated it on images,
speech, natural language, and tabular data. MNTD assumes
that backdoored models and clean models handle input
queries differently, and the differences can be captured
by a meta-classifier. MNTD constructs a large number of
“shadow models” where certain models are poisoned with
randomized trigger patterns. Using these shadow models,
MNTD trains a meta-classifier to detect whether a given
model has been backdoored. The large number of randomly
backdoored shadow models allows MNTD to generalize
across different types of backdoor attacks (including those
with previously unseen triggers), outperforming existing
methods [89]. This idea of training the meta-classifier with
a set of diverse shadow models (backdoored by a variety of
different trigger patterns) is referred to as “jumbo learning”.
In addition, MNTD also introduces a query tuning step,
which co-optimizes the query inputs together with the meta-
classifier to improve the detection performance.

To effectively apply MNTD to our malware dataset,
we have communicated with the authors of MNTD and
configured MNTD based on the authors’ suggestions (see
Appendix B for details). To detect the baseline, we train
2,304 clean shadow models and another 2,304 backdoored
shadow models. We split these shadow models using 89%
for training and 11% for validation. After training the
MNTD meta-classifier, we use it to classify 256 clean
models and 256 backdoored models. The 256 clean models
are trained using a random 50% of the training set. The 256
backdoored models are poisoned by a universal backdoor
that aims to misclassify any triggered malware as “benign”.

Table 5 shows that MNTD is highly effective against the
universal backdoor (baseline) with an AUC of 0.960 when
query tuning is enabled. This confirms that MNTD is at least
applicable to our dataset and binary classification settings.



MNTD Configuration Target Set AUC (Avg ± Std)
Mobisec 0.438 ± 0.245

MNTD w/o query tuning Leadbolt 0.511 ± 0.131
Tencentprotect 0.472 ± 0.094

Mobisec 0.457 ± 0.035
MNTD w/ query tuning Leadbolt 0.551 ± 0.027

Tencentprotect 0.660 ± 0.027

TABLE 6: MNTD against Transferred Attack—We run
MNTD against attacks with “limited data + mismatched model”,
and show the attacks are still effective to evade MNTD.

Target Set ASR(X∗
T ) ASR(X∗

R) Regres. Error
Cussul 0.916 0.663 0.0313

Tencentprotect 0.954 0.500 0.0088
Mobisec 0.979 0.234 0.0006
Leadbolt 0.927 0.087 0.0010

TABLE 7: Regression Analysis—We run a regression to
separate the target family (T ) and the remaining set (R). A larger
regression error indicates T and R are harder to separate.

Next, we further evaluate MNTD against our JP attack.
The configuration is mostly consistent with the above. As
shown in Table 5, our attack can evade the detection of
MNTD. The detection AUCs are below 0.557 (barely better
than random guessing) for all three target families. Impor-
tantly, we confirm that the selective backdoor attack on
Tencentprotect can evade MNTD. Recall that Tencentpro-
tect is considered an underperforming family because its
ASR(X∗

R) (attack success rate on the remaining malware)
is moderately high (0.500). As a sanity check, we also run
the MNTD experiment for another high-ASR(X∗

R) family
called “Cussul” with ASR(X∗

R)=0.663. We confirm that the
selective backdoor of Cussul can also evade MNTD. The
results suggest that an ASR(X∗

R) around 0.5 to 0.6 can
already provide sufficient stealth against existing detectors.
MNTD against Transferred Attack. We further test
MNTD against the more realistic attack under the transferred
setting (i.e., limited data + different model, see the attack
details in §5.3). For this experiment, we need to use SVM
for the shadow models for MNTD given that the defender
knows their own model (i.e., SVM). We configure the testing
target models with a poisoning ratio between 0.005 and
0.01 as they are enough to achieve a good ASR(X∗

T ).
As shown in Table 6, most detection AUCs are around 0.5
and Tencentprotect has a slightly better AUC of 0.660. The
results confirm that our attack with limited data access and a
different model structure can still bypass MNTD’s detection.

5.5. Case Study on Underperforming Families

To understand the reasons behind the underperforming
families, we perform several case studies.
Cussul & Tencentprotect. As shown in Table 1, Cussul
and Tencentprotect have higher ASR(X∗

R) (0.500–0.663)
than other families Although our evaluation has shown that
their ASR(X∗

R) is sufficient to evade existing detectors
(§5.4), we still would like to understand the reason behind
their high ASR(X∗

R). After analyzing their feature distribu-
tions, we observe that the common features of Cussul and
Tencentprotect are also common in the remaining malware.

Target Set Trg. Size (mp) ASR(X∗
T ) ASR(X∗

R) F1(main)
Mobisec 31 0.925 0.133 0.926
Leadbolt 6 0.791 0.041 0.926

Tencentprotect 53 0.920 0.418 0.926

TABLE 8: Attack Results for JP Attack (Problem
Space)—The results of all 10 families are presented in Appendix
in Table 16). The poisoning rate is 0.1%.

In other words, we suspect that the target malware samples
(T ) in Cussul and Tencentprotect are too similar to the
remaining malware (R), making it difficult to find a trigger
that selectively protects T while ignoring R. Such similarity
could be caused by many reasons, e.g., code reuse among
different malware authors [19].

To validate this hypothesis, we run a simple logistic
regression analysis, attempting to separate the target set T
and the remaining set R. As shown in Table 7, for Cussul,
it has a relatively large regression error (0.0313) which is
similarly high for Tencentprotect. This confirms that their
common characteristics with other families make it hard
to separate them from the remaining set. For comparison,
we run the same analysis for two well-performing families,
Mobisec and Leadbolt. Both return much lower regression
errors (0.0006 and 0.0010), meaning they can be more easily
separated from the remaining families, which makes it easier
to create a selective backdoor for them.
Airpush. Airpush is a large family with 1,021 samples. As
shown in Table 1, Airpush’s ASR(X∗

R) is reasonably low
(0.123) but its success rate on the target set T is among the
lowest (ASR(X∗

R)=0.742). We analyze the failed Airpush
samples and find that they usually carry a large number of
malicious features. It is possible that the small trigger is
insufficient to overturn the “malicious” label. To further im-
prove its ASR(X∗

R), we slightly tune the hyperparameters
in the loss function that control ASR(X∗

R). For instance,
by increasing λ1 to 10 (from 5) and λ2 to 2 (from 1) while
keeping λ3 = 1, we can get an ASR(X∗

T ) of 0.908 and an
ASR(X∗

R) of 0.423, which is on par with other families.
Summary. We observe that family size is not necessarily a
direct cause of the underperformance of the attacks. Instead,
it is the underlying representation that may abstract features
between the target family T and the remaining families R
as being shared, thus hurting the attack performance. In
addition, if the target family’s samples carry a large number
of malicious features, it is more difficult for the small trigger
to overturn them.

6. Problem-Space Attack and Defense

In this section, we evaluate the problem-space attack by
realizing the triggers in the malware/benign software code.
JP Attack. As described in §4.5, we first extract the
mapping between features and benign gadgets. Out of the
10,000 features, we are able to extract gadgets for 2,171
features using the enhanced harvesting tool. For certain
features, we cannot extract the corresponding gadgets due
to implementation limitations of FlowDroid [13] that serves
as the core instrumentation library for the harvesting tool.
While the feature coverage can be further improved (with



Poisoning Rate Trigger Size ASR F1(main)
0.1% 30 0.337 0.923

4% 30 0.527 0.922
4% 80 0.891 0.924

TABLE 9: Attack Results for Explanation-guided Back-
door Attack (Problem Space)—Since the attack is not selec-
tive, we compute ASR based on all testing malware samples.

additional engineering efforts), we believe this mapping is
sufficient for a proof-of-concept. Based on the mapping, we
run the problem-space attack by considering the side-effect
features. The additional computational overhead introduced
by the problem-space attack is acceptable. While the gadget
harvesting process can be time-consuming (144 hours, using
a commodity server), we argue it is a one-time effort. Once
the gadget-feature mapping is extracted, it can be reused to
run any future JP attacks. With a database of gadgets, it only
takes several minutes to compute the final trigger with the
feature-space trigger. Further details on execution overhead
are presented in the supplementary materials [8].
Baseline: Explanation-guided Backdoor [72]. We use
explanation-guided backdoor [72]) as the comparison base-
line. We take the original code [6] from the authors and run
it on our dataset and the MLP classifier for a fair compari-
son. Similar to its original implementation on the EmberNN
model (which also uses MLP as the target), we run the
GradientSHAP explainer to compute the Shapley values.
Then we apply their “greedy combined selection” method
on our feature sets. Following the original implementation,
the attack algorithm only selects trigger features from two
categories, namely “requested hardware components” and
“list of permissions” to achieve realizability (309 modifiable
features). The values of the selected backdoor features are
set to 1 and we only add features without removing any
features (considering that removing features may hurt the
original apps’ functionality). For a fair comparison, we test
two poisoning rates: 0.1% (JP attack’s default poisoning
rate) and 4% (suggested poisoning rate used in [72]).

6.1. Attack Effectiveness

We first test the JP attack in the problem-space on the 10
families from Table 1. All the attacks use the default hyper-
parameters with a 0.1% poisoning rate. The detailed results
are presented in Appendix D, Table 16. We find that the JP
attack is still highly effective for 6 out of 10 families with
the selective backdoor effect. For the remaining 4 families,
the backdoor attack is still effective (with an ASR(X∗

T ) of
0.9 or higher) but the attack is not selective due to side-effect
features. Then we further demonstrate how to further reduce
such side-effect to recover the selective attack impact on
these families. Due to space limit, we present these details
in Appendix D. In the following, we select the same three
families as before (Mobisec, Leadbolt, and Tencentprotect)
to further analyze attack stealth.4 As shown in Table 8, JP

4. We select these three families to be consistent with previous analysis.
Another reason is that the defense model MNTD is very slow to train (due
to the size of our dataset and the large number of target models), and it
needs to be separately trained for each family.

MNTD Configuration AUC (Avg ± Std)
MNTD w/o query tuning 0.459 ± 0.265
MNTD w/ query tuning 0.862 ± 0.103

TABLE 10: MNTD Detection on Explanation-guided
Backdoor (Problem Space)—MNTD with query tuning is
effective against explanation-guide backdoor (AUC=0.862).

MNTD Configuration Target Set AUC (Avg ± Std)
Mobisec 0.524 ± 0.039

MNTD w/o query tuning Leadbolt 0.533 ± 0.032
Tencentprotect 0.566 ± 0.088

Mobisec 0.524 ± 0.019
MNTD w/ query tuning Leadbolt 0.514 ± 0.017

Tencentprotect 0.521 ± 0.037

TABLE 11: MNTD Detection on JP Attack (Problem
Space)—MNTD constructs randomized triggers with all features.

attack is successful on these families in the problem-space.
As a comparison, Table 9 shows the attack results for the

baseline attack (explanation-guided backdoor). Recall that
this attack is not “selective” and thus we report the attack
success rate (ASR) over all the test malware samples. As
shown in Table 9, when using the same poisoning rate as
JP attack (0.1%), the explanation-guided backdoor has a low
ASR of 0.337 (under its default trigger size of 30). As such,
we increase the poisoning rate to 4% and the trigger size to
80. We find that the ASR is improved as expected. For the
rest of the evaluation, we will use this setting (4% poisoning
rate and trigger size of 80) as its ASR is comparable with
JP attack’s ASR(X∗

T ).

6.2. Evaluation against MNTD

To assess the stealthiness of the realizable triggers, we
again use MNTD following the same setting of §5.4. Since
other defenses such as STRIP, AC, and Neural Cleanse are
easier to evade (as shown in §5.4), we only present the
strongest defense (MNTD) here for brevity. According to
MNTD’s design, it expects to have some knowledge about
the high-level trigger generation method (without knowing
the specifics such as trigger size, trigger location, or features
used). For explanation-guided backdoor, it achieves trigger
realizability by only using two categories of “modifiable”
features (309). As such, we configure MNTD to randomly
pick n features (5≤ n < 100) from these modifiable features
to generate shadow models (similar to §5.2). For JP attack,
our new gadget extraction tool can cover all feature cate-
gories, and thus the trigger is no longer restricted to certain
feature categories. As such, we test two settings. First, we
train MNTD by randomly picking n features (5≤ n <100)
from all features as triggers for the jumbo learning. Second,
we emulate a worst-case scenario for attackers by providing
MNTD the precise list of realizable features for its training.

Table 10 shows the detection results on the explanation-
guided backdoor attack (baseline). We repeat the experi-
ments 5 times to report the average results. We confirm
that MNTD (with query tuning enabled) can successfully
detect the baseline attack with an AUC of 0.862. Without
query tuning, the detection results are unstable (effective
in 1 out of 5 rounds). Overall, the results confirm that



MNTD Configuration Target Set AUC (Avg ± Std)
Mobisec 0.529 ± 0.033

MNTD w/o query tuning Leadbolt 0.532 ± 0.026
Tencentprotect 0.556 ± 0.080

Mobisec 0.515 ± 0.009
MNTD w/ query tuning Leadbolt 0.476 ± 0.021

Tencentprotect 0.490 ± 0.021

TABLE 12: MNTD Detection on JP Attack (Problem
Space)—MNTD constructs randomized triggers with 2,171 real-
izable features only.

the conventional universal backdoor that targets all malware
samples is detectable.

Table 11 shows the detection results against JP attack un-
der the first setting where MNTD does not know the precise
realizable feature list. We find that the selective backdoor
attack can successfully evade MNTD in the problem space—
regardless of whether query tuning is enabled or not, the
detection AUC is barely above 0.5.

Table 12 shows the detection results against JP attack
under the second setting. Here, we further help MNTD by
giving away the exact list of 2,171 features for which the
attacker can harvest gadgets. Note that the list is highly
dependent on the attacker’s gadget harvesting strategies and
the benign applications used for the harvesting. While it
is unrealistic that the defender knows the exact list, we
want to see if such information can help MNTD. Table 12
demonstrates that the JP attack can still evade the detection
of MNTD, even if we assume the defender knows the exact
list of realizable features. Overall, the result confirms that
JP attack is stealthier than existing malware backdoors.

6.3. Attack under the Transferred Setting

Finally, we revisit the transferred attack setting (see
§5.3) in the problem space. We test the most challenging
scenario where the attacker has limited data access and
a mismatched local model. We confirm that the trans-
ferred attack is still effective in the problem space with
an ASR(X∗

T ) of 0.84–1.00 (see detailed experiments in
Appendix §G). While the ASR(X∗

R) becomes higher due
to side-effect features, we confirm it is still sufficient to
evade MNTD (also see Appendix §G). The reason is that this
setting creates a mismatch between the defender’s shadow
models (used for MNTD training) and the testing models
backdoored by the problem-space attack. This in turn makes
MNTD less effective in capturing the attack.

7. Discussion

Why JP Attack Works. JP attack is possible primarily
due to the design of Eqn. (3). The trigger is designed
to work only for the target malware family but no other
families within the “malware” class. This loss is achievable
because the same family shares similarities. This allows us
to optimize a “family-specific” trigger that only works when
the trigger is combined with family-specific features.
Reasons for Stealthiness. There are multiple explanations
behind the improved stealthiness of JP attack against exist-

ing defenses. First, JP attack violates the common assump-
tion of most existing defenses, that is, any triggered samples
within a class (or across all classes) will be misclassified to
the target label. Our attack only targets for a small subset
of samples within a class which causes a mismatch. By
only targeting a small subset of target malware samples,
JP attack leaves a smaller footprint in the model (i.e., less
anomalous). Another benefit (for targeting a small subset
of malware) is JP requires a smaller poisoning rate since
JP does not need to poison/modify the model as much as
other existing attacks. We show that the MNTD defense,
which works well on conventional backdoors in malware
classifiers, cannot effectively discover the JP’s backdoor.

Second, some defenses (e.g., STRIP) are designed for
image data (numeric features) but are not optimized for
malware samples (sparse binary feature vectors).

Third, defense techniques that are designed for multi-
classification classifiers also suffer when applied to binary
classifiers. The intuition is that binary classifiers output less
information (i.e., a probability distribution over two classes
instead of multiple classes) for anomaly detection.

Finally, our problem-space trigger (realized by code
gadgets) enlarges the scope of modifiable features. The
enlarged search space makes it easier for attackers to find
realizable triggers but makes it more difficult for defenders
(e.g., MNTD) to search for the trigger.
Ideas for Countermeasures. While designing a new
adaptive defense is out of the scope of this paper, we
want to discuss potential directions. To defend against JP
attack, existing defenses need to revisit their assumptions
as the trigger only works for a selective subset of samples
(within a class). An adaptive defense must make a guess
on which subset is the target. A naı̈ve defense may select
one malware family at a time and exhaustively scan for a
selective backdoor in each family. However, attackers can
evade this defense by dividing their malware family into
sub-families and designing a different selective backdoor
for each. Additionally, the attacker can disregard old mal-
ware samples that are already detected by AV engines and
focus on protecting new variants to be disseminated in the
future. By increasing the difference between the new and
old variants, the selective backdoor for the new variants
will be more difficult to detect. Another defense idea is
inspired by the observations from our case studies in §5.5.
We have shown that if a malware family is too “generic”
(with high similarity to the remaining malware families), it
is more difficult to create a selective backdoor. Therefore,
defenders might improve the feature engineering process to
increase the data homogeneity within the “malware” class.
This can be done by further removing some family-specific
features (to reduce selective backdoor risk) while preserving
key malware features (for main-task performance). Future
work is needed to validate these ideas.
Generalizability. While this paper is focused on binary
Android malware classifiers, the idea of JP attack should
be applicable to other binary classification scenarios. The
expected condition is that the class of interest should contain



natural sub-groups to produce selective triggers.
As a validation, we did a brief experiment on a PE

malware dataset in the feature space to show that the JP
attack can achieve the selective backdoor effect (results are
presented in supplementary materials [8]). Further work is
needed to explore the applicability of the JP attack to other
problem domains.
Limitations. Our study has a few limitations. First, our
evaluation is mainly based on an Android malware dataset.
This is because it would require extensive engineering ef-
forts to develop a new gadget harvesting tool for other
binary types (e.g., PE files). Since gadget extraction (binary
analysis) is not the main focus of the paper, we use the
Android malware as a proof-of-concept for our idea. Second,
our main experiment simply uses one set of hyperparameters
for all malware families. It is possible that further tuning the
hyperparameters for each family may produce better results,
as shown in the case studies. Finally, there is still room to
make the attack even stealthier (as discussed above). We
leave further experiments on adaptive attacks against new
countermeasure ideas to future work.
Ethics and Responsible Code Release. In this paper, we
did not attempt to test or poison any commercial/deployed
malware detection systems for ethical considerations. Our
paper is in line with prior works that follow the best
practices to study adversarial attacks against malware clas-
sifiers [65, 72]. We responsibly release our code to other
researchers to facilitate future research, especially on de-
fense methods. To prevent potential misuse (from malicious
parties), we host the code in a private repository and will
verify the request’s identity before sharing.

8. Related Work

We discuss existing works that aim to make backdoor
attacks stealthier, categorized based on threat models.
Attacker Controlled Training. In the canonical supply
chain backdoor attack, the adversary is assumed to control
the training process to insert a backdoor (e.g., BadNets [34])
and can arbitrarily label training examples (in contrast to
clean-label attacks). Under this threat model, researchers
have proposed to improve stealthiness by using dynamic
triggers [71], creating sample-specific triggers using jointly
trained encoders [50, 60], using “image styles” as trig-
gers [26], creating triggers by mixing two images from dif-
ferent classes [53], or inserting a latent backdoor trigger via
transfer learning [90]. Other attacks under this threat model
manipulate image encoders of self-supervised learning mod-
els [42], insert backdoors into the latent space [30, 94],
exploit transformation/quantization functions [31, 83], and
directly edit the weights of vulnerable neurons [22, 55, 67].
In contrast to our attack, these methods give the attacker
privileged control over the training process, and many do not
generalize beyond the image domain (e.g., style transfer).
Attacker Controlled Data and Labeling. An alternative
threat model does not allow the attacker to control the
training process itself, but only to provide poisoned data

and labels. To increase stealthiness, some techniques exploit
properties of image classification: TaCT [77] uses triggers
that only work for a given class and WaNet [61] uses image
warping as a trigger such that the trigger is imperceptible
to humans. A recent subpopulation attack [41] does not use
triggers, but instead supplies poisoned data targeting a spe-
cific “subpopulation” within the dataset. However, all these
attacks still require that the attacker controls the labeling
process to provide incorrect labels for the poisoned data.
Clean-Label Attacks. Clean-label attacks do not require
the attacker to control the labeling process [79], and the
supplied poisoned data will have their original labels—this
is the assumption in our work. An image-specific example
is the reflection attack [56], which creates natural-looking
triggers by applying the reflection effect from glasses and
windows to everyday objects. Poison frog attacks [73] aim
to misclassify one specific example. Rather than triggers
they use specifically crafted, clean-labeled data to poison the
model, however, the attacker must know the target model’s
loss function to compute the special poisoning data. Batch-
Order Backdoor (BOB) attacks [75] create a backdoor by
changing the order of training examples that are fed into the
model. Our proposed backdoor attack is also a clean-label
attack, however, with a specific focus on stealthier backdoors
for malware classifiers.
Backdooring Malware Classifiers. Most existing back-
door attacks cannot be applied to malware classifiers be-
cause (1) the techniques are specifically designed for images
(e.g., style transfer, reflection effect) and/or (2) the trigger
computation cannot be easily realized in the problem space.
Existing works targeting malware classifiers [48, 72] focus
on conventional backdoors that aim to misclassify all mal-
ware samples. In contrast, we have shown that a selective
backdoor improves stealthiness, following the intuition that
a malware author would prioritize protecting their own mal-
ware family instead of all malware in general. Furthermore,
Li et al. [48] still requires the attacker to flip the label.

9. Conclusion

In this paper, we empirically evaluate the stealthiness
of existing backdoor attacks in Android malware classifiers
and show their detectability. To improve stealth, we propose
Jigsaw Puzzle (JP), a selective backdoor attack that aims
to exclusively protect a malware author’s samples while
ignoring other malware. We validate this idea in both the
feature space and the problem space, against a series of
defense methods such as MNTD, STRIP, AC, and NC. Our
future work will look into effective defense methods against
selective backdoor attacks.
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Appendix A.
MNTD vs. Conventional Malware Backdoor

We provide a brief evaluation of the stealthiness of
the existing malware backdoor attack. We apply a recent
defense method, MNTD, to the explanation-guided back-
door attack [72]. The goal is to test the explanation-guided
backdoor attack [72] under its original scenario (i.e., PE
malware detection). The result is consistent with that in §6
using Android malware.
Experiment Setup. We take the stealthiest version of the
backdoor attack described by Severi et al. [72] (i.e., the
“greedy combined selection” method). We set up a gradient-
boosted decision tree (GBDT) classifier trained on the Em-
ber PE malware dataset [10] as the target model. For MNTD,

MNTD Configuration AUC (Avg ± Std)
MNTD w/o query tuning 0.800 ± 0.114
MNTD w/ query tuning 0.919 ± 0.052

TABLE 13: MNTD Detection Result—the detection AUC of
MNTD against the explanation-guided backdoor attack.

we train a meta-classifier using 2,304 benign shadow models
and 2,304 backdoored shadow models on 2% of the clean
training set. 89% of these shadow models are used for
training and 11% for validation. The backdoored shadow
models are constructed using randomized triggers. Given the
realizability requirement, we assume MNTD knows which
features are modifiable.5 To train MNTD, we randomly pick
features from the 35 modifiable features to construct the
trigger pattern and randomly set the feature values based
on values observed in the 2% training set. Other parameters
of MNTD follow the default setting of MNTD. After the
MNTD meta-classifier is trained, we run it to classify 128
clean models and 128 backdoored models. The clean models
are trained using a random sample of 50% of the training
set. The backdoored models are poisoned with the “greedy
combined selection” method using 17 independently mod-
ifiable features (default setting), with a poison rate of 4%.
We also confirm the backdoor attack is successful with an
average ASR of 0.827.
Results. Table 13 shows the detection results. We repeat
the experiments 5 times, and report the average AUC (area
under the ROC curve). AUC=1 indicates perfectly accurate
detection while AUC=0.5 represents the results of random
guessing. We observe that MNTD (with querying tuning)
is highly effective in detecting backdoored models with
an AUC of 0.919. The results suggest that, with a strong
defense such as MNTD, the footprint of the realizable
malware backdoor is conspicuous.

Appendix B.
MNTD Configurations

To adapt MNTD for Android malware classifiers, we
have communicated with the authors of MNTD. Based on
their suggestions, we configure MNTD as the following.
We assume malware authors’ goal is to let their malware
samples evade the detection (i.e., target label is set to
“benign” for MNTD). Given the samples are represented by
binary sparse vectors, we initialize the “query set” of MNTD
accordingly. Specifically, the query vectors are initialized by
setting 10–100 random features to the value of 1, while the
majority of the feature values are set to 0. During meta
classifier training, we use a query set of 100 inputs. Other
parameters of MNTD follow their default settings.

According to MNTD’s design, it still expects to have
some high-level knowledge about the trigger of the attackers
(without knowing the specifics such as trigger size, trigger
location, or features used). In this case, for the universal

5. The set of modifiable features is common knowledge. For Ember,
2,316 out of the 2,351 features are created via feature hashing and thus
are not directly modifiable. Among the 35 modifiable features, 17 can be
modifiable without affecting other features (i.e., independently modifiable).



Target Family (T) Plankton Mobisec Adwo Youmi Cussul Tencentp. Anydown Leadbolt Airpush Kuguo
Intra-family Distance 6.032 4.651 8.633 7.945 3.988 4.407 6.704 6.714 8.565 5.144
Inter-family Distance 7.798 7.256 8.992 8.193 6.904 7.107 8.072 8.283 9.454 8.368

TABLE 14: Intra-family vs. Inter-family Distance—For each target family, we calculate the average intra-family distance
(Euclidean distance of every pair of samples in the target family) and average inter-family distance (Euclidean distance between samples
in the target family and samples in other families). The result confirms that samples from the same family share similarities.

Target # of Trig. ASR ASR FPR F1

Family Apps Size (X∗
T ) (X∗

R) (X∗
B) (main)

Kuguo 2,845 27 0.968 0.412 0.0000 0.912
Dowgin 2,622 137 0.977 0.854 0.0000 0.921
Artemis 1,057 7 0.585 0.582 0.0000 0.925
Airpush 1,021 47 0.742 0.123 0.0007 0.923

Jiagu 655 36 0.983 0.417 0.0002 0.924
Revmob 631 46 0.860 0.618 0.0000 0.925
Genpua 551 7 0.672 0.486 0.0000 0.923
Feiwo 498 21 0.941 0.655 0.0000 0.926

Smspay 424 23 0.922 0.821 0.0000 0.932
Eldorado 343 23 0.805 0.269 0.0003 0.925

Igexin 260 21 0.909 0.119 0.0011 0.927
Deng 236 19 0.896 0.821 0.0000 0.927

Baidup. 212 23 0.922 0.210 0.0003 0.927

TABLE 15: Attack Results of Top 13 Families (Feature
Space)—The top-13 families contribute to 80% of malware sam-
ples in the dataset. All of the families use the default poisoning
rate of 0.001. “Baidup.” is short for Baiduprotect.

Target Set # of Trig. ASR ASR FPR F1

Family Apps Size (X∗
T ) (X∗

R) (X∗
B) (main)

Plankton 34 6 0.882 0.036 0.0014 0.927
Mobisec 48 31 0.925 0.133 0.0010 0.926

Adwo 60 147 0.970 0.908 0.0000 0.928
Youmi 65 98 0.926 0.875 0.0000 0.928
Cussul 117 66 0.889 0.628 0.0001 0.926

Tencentp. 142 53 0.920 0.418 0.0006 0.926
Anydown 188 32 0.693 0.285 0.0001 0.925
Leadbolt 210 6 0.791 0.041 0.0011 0.926
Airpush 1,021 80 1.000 0.992 0.0000 0.924

Kuguo 2,845 73 0.998 0.919 0.0000 0.913

TABLE 16: Attack Results in Problem Space—All of the
families use the default poisoning rate of 0.001.

backdoor baseline used in §5.4, we assume MNTD has some
knowledge about the fact that the attacker uses top benign
features as triggers. As such, the defenders randomly pick
the top n benign features (5≤ n <100) to create random
triggers to train MNTD. For the explanation-based backdoor
attack, we assume MNTD has some knowledge about the
category of features that are independently modifiable. For
the Ember dataset, we set jumbo learning to randomly
choose n features (5≤ n ≤ 35) from all the modifiable
features (35 features in total). For the Android malware
dataset, we randomly pick n features (5≤ n < 100) from
the modifiable feature categories determined in the original
paper (309 features in total). We set such configurations
based on the suggestions of the MNTD authors. For JP at-
tack, we realize the trigger by inserting code gadgets and our
new gadget extraction tool can cover all feature categories.
Since our trigger is no longer restricted to features of certain
categories, MNTD is trained with random features (random
n features, 5≤ n <100) for the jumbo learning. Also, we
have configured a worse-case scenario for attackers where
we provide MNTD the precise list of realizable features for
its jumbo learning (see §6).

Appendix C.
Evaluation on the Large Families

Table 15 shows the attack results for the top-13 families.
We find that the attack is reasonably successful on 8 out
of the 13 large families. For example, the ASR(X∗

T ) on
the largest family Kuguo is as high as 0.968 with a mod-
erate ASR(X∗

R) of 0.412. There are still underperforming
families under the default parameter setting. For instance,
Artemis and Genpua have low ASR(X∗

T ), and Dowgin,
Smspay, and Deng have high ASR(X∗

R). The reasons be-
hind the underperforming families have been discussed in
§5.5 (e.g., high similarity with remaining families, abnormal
feature distributions). Most of the problems can be addressed
by simply adjusting the hyper-parameters. For instance, for
Dowgin, by increasing λ1 to 10 (from 5) and λ2 to 2 (from
1) while keeping λ3 = 1, we can get an ASR(X∗

T ) of 0.915
and an ASR(X∗

R) of 0.688. This result is consistent with
Airpush as discussed in §5.5. Overall, JP attack works for
a considerable number of large families too.

Appendix D.
Problem-space Attack Results

Table 16 shows the problem-space attack results for the
JP attack on the 10 families of different sizes. Most of
these families (6 out of 10) show successful selective back-
door attacks. Their problem-space performance is on par
with their feature-space performance as shown in Table 1.
For the remaining 4 families (Adwo, Youmi, Airpush, and
Kuguo), the backdoor attack is still effective (with over 0.9
ASR(X∗

T )) but the attack is no longer selective. Overall, the
result is consistent with the feature-space analysis, that is,
the selective backdoor is effective on most of the families.

To further mitigate the impact of the side-effect features,
we have explored a few ideas such as using different sets
of hyper-parameters or breaking large families to smaller
subfamilies. Among these, we find that the most effective
method is to penalize side-effect features early in Algo-
rithm 1. When computing the trigger, we can add a loss
term to penalize the selection of features that will introduce
a larger number of side-effect features. The cost is that
Algorithm 1 will be slower, but the benefit is generated
trigger pattern is less likely to be affected by side-effects.
Using the idea, we can help certain families to achieve the
selective backdoor effect again. For example, we can reduce
Adwo’s ASR(X∗

R) to 0.593 (with an ASR(X∗
T ) of 0.870).

Similarly, we can reduce Youmi’s ASR(X∗
R) to 0.548 (with

an ASR(X∗
T ) of 0.732).



Attack Method False Reject. False Accept. AUC
Rate (FRR) Rate (FAR) (Avg ± Std)

Baseline 0.03 0.970 ± 0.021 0.801 ± 0.0550.15 0.335 ± 0.141

T=Mobisec 0.03 0.970 ± 0.005 0.486 ± 0.0350.15 0.883 ± 0.032

T=Leadbolt 0.03 0.972 ± 0.004 0.396 ± 0.0210.15 0.900 ± 0.012

T=Tencentprotect 0.03 0.980 ± 0.003 0.472 ± 0.0320.15 0.899 ± 0.017

TABLE 17: STRIP against Conventional and Selective
Backdoor—STRIP is moderately effective against the conven-
tional baseline attack (AUC=0.801) but is ineffective against our
selective backdoor attack (AUC<0.486).

Target Set # Test Malware Samples ASR(X∗
T )

Plankton 62 0.658
Mobisec 396 0.878

Adwo 426 0.478
Youmi 356 0.690
Cussul 419 0.830

Tencentprotect 342 0.781
Anydown 457 0.831

Airpush 212 0.893

TABLE 18: Attack Results for New Malware Variants
(2017–2020)—We backdoor the target model with a trigger
learned from malware samples in 2015–2016. Then we test the
trigger on new malware variants from these families in 2017–2020
and show the trigger remains effective.

Appendix E.
Evaluation with STRIP

STRIP aims to classify inputs that contain a backdoor
trigger from those that do not have a backdoor trigger. We
follow the recommended setting of STRIP [4]. We randomly
pick 2000 clean samples and 2000 triggered samples (con-
taining both malware and benign examples). To classify
whether a given sample is triggered, we mix this sample
with one of the other 100 random clean samples to create
100 mixed vectors. Then we feed the vectors to the target
classifier to calculate the prediction entropy. We repeat the
experiments 5 times.

We find that STRIP shows some effectiveness on the
baseline universal backdoor attack, but is ineffective against
our attack. As shown in Table 17, if we take a false rejection
rate (FRR) of 15% (classifying clean inputs as triggered), it
produces a false acceptance rate (FAR) of 33.5% (classifying
triggered inputs as clean). The overall AUC is 0.801. This
detection performance is slightly worse than that origi-
nally reported on image classifiers [33], possibly due to
the binary-valued sparse feature vectors. When adding up
two sparse vectors, it is easier to create out-of-distribution
samples (which increases the prediction entropy even for
triggered samples). In comparison, Table 17 shows that the
AUC of STRIP is below 0.486 on our attack. The result
confirms that STRIP is ineffective in detecting the JP attack.

Poison R. Target Set Trg. Size ASR(X∗
T ) ASR(X∗

R) F1(main)
Mobisec 39 1.000 0.811 0.920

0.005 Leadbolt 40 0.840 0.324 0.920
Tencentprotect 41 0.993 0.852 0.920

TABLE 19: Limited Data + Different Model (Problem
Space)—The attacker has limited access to training data and a
mismatched model structure with the target.

MNTD Configuration Target Set AUC (Avg ± Std)
Mobisec 0.117 ± 0.234

MNTD w/o query tuning Leadbolt 0.097 ± 0.188
Tencentprotect 0.002 ± 0.003

TABLE 20: MNTD against Transferred Attack (Problem
Space)—The mismatches between MNTD’s training models and
the testing models backdoored by problem-space attacks lead to
major errors in MNTD. The result confirms effective evasion.

Appendix F.
Testing with More Recent Malware Variants

We run a quick experiment to examine whether the JP
attack can be persistently effective as the malware families
introduce new variants over time. To do so, we use our main
dataset (2015–2016) to craft the JP attack trigger and poison
the target model. Then we test the trigger on more recent
variants (e.g., those appeared in 2017–2020) and examine
whether the trigger remains effective.

To find more recent malware variants, we leverage a
dataset [68] that contains a large number of VirusTotal
reports on Android APKs (2009–2020). We focus on the
reports from 2017 to 2020 and run Euphony [40] to parse
the reports and get the family information for each sample.
For our experiment, we focus on the 10 families used in
Table 1. For 8 out of the 10 families, we can find recent
variants (not for Leadbolt and Kuguo). We randomly select
500 recent samples for each family, download their APKs
from Androzoo [9], and extract their features vectors. We
can successfully extract feature vectors for more than 95%
samples (except for Plankton which contains many invalid
APKs and only has 223 valid samples).

We run the experiment as the following. First, we take
the target malware classifier poisoned by the trigger learned
with the 2015–2016 data. Then we take the poisoned clas-
sifier to test on the more recent malware variants of 2017–
2020. To show the impact of the trigger, we only consider
malware variants that are still predicted as “malicious”
without the trigger. In other words, if a new variant can
already evade the classifier on its own, we don’t consider it
for this evaluation. Table 18 reports the number of malware
samples that are still predicted as “malicious” before adding
the trigger. Then after adding the trigger, Table 18 reports
the attack success rate ASR(X∗

T ), which is the rate of
triggered samples predicted as “benign”. We observe that
all the families can achieve an ASR(X∗

T ) over 65%, with
the majority close to 80%–90%. The exception is Adwo
(47.8%): a closer inspection shows Adwo variants include
a large number of malicious features and cannot be easily
overturned by the trigger (as discussed in §5.5). Overall, the
result shows that the JP trigger can remain effective even
after years of the initial poisoning.



Parameter Mobisec Leadbolt Tencentprotect
ASR ASR ASR ASR ASR ASR
(X∗

T ) (X∗
R) (X∗

T ) (X∗
R) (X∗

T ) (X∗
R)

v = 0.5 0.975 0.788 0.895 0.038 0.601 0.120
v = 1.0 0.979 0.234 0.927 0.087 0.954 0.500
v = 1.5 0.946 0.266 0.846 0.037 0.820 0.256

λ4 = 0.01 1.000 0.685 0.762 0.027 0.293 0.061
λ4 = 0.001 0.979 0.234 0.927 0.087 0.954 0.500

λ4 = 0.0001 0.613 0.095 0.933 0.429 0.849 0.378
λ1 = 5 0.979 0.234 0.927 0.087 0.954 0.500

λ1 = 10 0.713 0.115 0.893 0.033 0.955 0.613
λ1 = 20 0.704 0.108 0.887 0.074 0.794 0.563
λ2 = 0.5 0.904 0.369 0.932 0.098 0.631 0.223
λ2 = 1.0 0.979 0.234 0.927 0.087 0.954 0.500
λ2 = 1.5 0.954 0.263 0.986 0.586 0.706 0.270

TABLE 21: Evaluation of Hyperparameters—For a given
hyperparameter, we change it to different values while setting the
others as the default values to observe its impact on results. For
all the settings, the F1(main) remains close to that of the clean
classifier (0.926), and is thus omitted for brevity.

Appendix G.
Problem Space Attack with Limited Data Ac-
cess + Different Models

We run the transferred attack setting in the problem
space. We choose the most challenging scenario where the
attacker has limited data access and a mismatched local
model (see §5.3 details). Not too surprisingly, the attack
is more challenging under the problem space due to the
combination of side-effect features, mismatched models, and
limited data access. For instance, the attack is difficult to
realize with only 10% of the training data and we find
success at 30%. As shown in Table 19, JP attack achieves a
high ASR(X∗

T ) for all the three families, though a slightly
high ASR(X∗

R) for Mobisec and Tencentprotect.
To show the attack is still stealthy enough to bypass

MNTD, we use MNTD to inspect the backdoored models
in the problem space. The result is reported in Table 20. We
find that query tuning of MNTD is completely ineffective
under this setting (possibly due to the major mismatches
between MNTD’s training models and the testing models
backdoored by the problem-space attack). For this reason,
we only report the result without query tuning. The result
confirms that MNTD is still ineffective in capturing our
attack, with an average AUC lower than 0.2 and a very high
standard deviation (indicating inconsistent/unstable perfor-
mance). We highlight that in this case labels cannot be
swapped to improve AUC, as this would affect results on
clean models. We have further tried different learning rates
and shadow model configurations to retrain the MNTD
which returns the same conclusion. Overall, the result con-
firms our attack under this setting can still bypass MNTD.

Appendix H.
Hyperparameters

In this section, we evaluate the sensitivity of JP attack
to hyperparameters. As described in §4, our trigger opti-
mization scheme has five hyperparameters: λ1, λ2, λ3, λ4

and v. In our main experiment in §5, we empirically set

them to the default values: λ1 = 5, λ2 = λ3 = v = 1,
and λ4 =0.001. We set λ1 higher than the others in order
to prioritize the protection of the target set malware. In
this section, the general methodology is to change one
parameter at a time while keeping other parameters the
same. The goal is to explain how each parameter influences
trigger optimization and provide guidelines for configuring
the optimization algorithm.

We start with v, which is used to balance between nor-
mal training and poisoning during the alternate optimization
(Eqn. 5)). As shown in Table 21, simply setting v = 1 is the
best option which equally balances the poisoning and normal
training during the alternate optimization. Using a larger
or smaller v would not lead to major differences in attack
success, but can change the balance between ASR(X∗

T ) and
ASR(X∗

R). Overall, we recommend a balanced alternate
optimization with v = 1.

λ4 is the initial value to balance the cross entropy loss
and the trigger size. It needs to be small to counter the
large trigger size in the early phase of the optimization.
Empirically, we set this default value as 0.001, the same
as in Neural Cleanse [81]. λ4 = 0.001 achieves the most
stable results over all three families. Other values such as
0.01 and 0.0001 mostly produce good attack performance
but may have occasional low ASR(X∗

T ) due to learning
small triggers (for Tencentprotect). Overall, we recommend
following prior work [81] to set this parameter.

λ1, λ2, and λ3 are used to jointly control the selective
backdoor effect on different types of samples. λ1 controls
the attack impact on the target malware set (T ), λ2 controls
the impact on the remaining malware set (R), and λ3

controls the effect on benign samples (B). To this end,
we always fix λ3 = 1 and tune the other two. As a
backdoor attack, we recommend prioritizing increasing the
target attack impact (ASR(X∗

T )) with a slightly large value
for λ1. As shown in Table 21, λ1 = 5 is a good setting.
However, if the value of λ1 is too high (e.g., 10, 20), it leads
to sub-optimal result because the optimization algorithm
cannot find the trigger that produces a high ASR(X∗

T ) and
a low ASR(X∗

R) simultaneously. For λ2, we recommend
using a smaller value (e.g., 0.5–1.5) to reduce ASR(X∗

R)
without dropping ASR(X∗

T ).
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