
Demo: Benchmarking Label Dynamics of VirusTotal Engines
Shuofei Zhu1, Ziyi Zhang2, Limin Yang3, Linhai Song1, Gang Wang3

1Pennsylvania State University
2University of Science and Technology of China

3University of Illinois at Urbana-Champaign

ABSTRACT
VirusTotal is the largest online anti-malware scanning service. It
is widely used by security researchers for labeling malware data
or serving as a comparison baseline. However, several important
challenges of using VirusTotal are left unaddressed (e.g., when
VirusTotal labels are stable and can be trusted), severely harming
the correctness of research projects depending on VirusTotal.

In this paper, we present VTSet, which contains daily VirusTotal
labels on more than 14,000 files over one year. VTSet can be used
to build and evaluate various tools to tackle the existing challenges
and facilitate the future usage of VirusTotal. Besides the data, VTSet
also provides a demonstration tool to display many measurement
results and a query tool to ease the access of its data. A video
demonstration of VTSet is located at the following link: https://
youtu.be/aSVaUGHxFi4.
ACM Reference Format:
Shuofei Zhu1, Ziyi Zhang2, Limin Yang3, Linhai Song1, Gang Wang3. 2020.
Demo: Benchmarking Label Dynamics of VirusTotal Engines. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3372297.3420013

1 INTRODUCTION
As the largest online anti-malware scanning service, VirusTotal ap-
plies more than 70 state-of-the-art anti-malware engines to analyze
user-submitted files and returns back engines’ detection results
(e.g., whether a file is malicious). VirusTotal has been heavily used
by industrial practitioners to identify false positives and false nega-
tives in their products, and researchers in the security community
for malware data annotation [2, 3].

In our previous work [9], we collected 115 top-tier conference
papers that used VirusTotal to label their evaluation datasets. We
studied how the researchers used VirusTotal and identified several
common methodologies. For example, since different VirusTotal
engines often disagree with each other, researchers often used a
threshold-based method to aggregate labels from different engines,
and considered a file is malicious, if a threshold is met in terms of
the number of engines that identify the file as malicious. In addition,
most researchers submitted their samples to VirusTotal only once
without considering possible label changes on VirusTotal, largely
due to their limited VirusTotal query quota.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7089-9/20/11.
https://doi.org/10.1145/3372297.3420013

VTSet

FInfo DResults QResults Scripts query.pydisplay.py config.html

Figure 1: The directory structure of VTSet.
We also conducted a measurement to validate or justify re-

searchers’ VirusTotal usage [9]. We collected daily VirusTotal labels
on 14,423 PE files without prior histories on VirusTotal for more
than one year. Our measurement on the data identified some en-
gines whose labels are very similar to each other and engines whose
detection decisions are highly influenced by other engines. These
engines may cause problems for the threshold-based label aggrega-
tion widely used by researchers. Our measurement also revealed
label flips are very common on VirusTotal, and a label aggregation
result can be changed after submitting the same file to VirusTotal
for the second time.

Although we identified questionable approaches of using Virus-
Total and provided several alternative suggestions [9], there are
still many key questions unanswered. First, given a file’s VirusTotal
labels, how can we know whether the labels are already stable and
will not change anymore? If a file’s VirusTotal labels are already
stable, they can be used to infer the true label of the file (using
the threshold-based label aggregation). Otherwise, they cannot be
trusted. Second, since users may not be able to wait for a file’s
VirusTotal labels to become stable, can we predict the file’s stable
labels using its current VirusTotal labels? Third, can we predict
whether a file will eventually be detected by a given number of
engines for the threshold-based aggregation method? In the end,
how can we exclude the impact of engines highly influenced by
others when aggregating VirusTotal labels? The answers to these
questions can significantly improve the future usage of VirusTotal.

The data we collected in our previous work contain fine-grained
VirusTotal labels on a large set of randomly sampled PE files over a
long period of time. Naturally, it can provide training data, ground-
truth labels, and features for various VirusTotal label prediction
tasks, which can answer the key questions discussed above. There-
fore, we transform our collected data into a dataset, VTSet, and
release it to encourage future researchers to explore how to predict
label changes on VirusTotal.

In this paper, we present VTSet, which is built by conducting a
daily measurement on more than 14,000 files over a year and can
serve as a benchmark set for many label prediction tasks. Besides
the data, VTSet also contains an interactive tool, which shows the
measurement results in [9] and helps users better use VirusTotal
(e.g., selecting suitable anti-malware engines). Since analyzing the
whole dataset takes a long time, VTSet also provides a query tool

Demo CCS '20, November 9–13, 2020, Virtual Event, USA

2081

https://youtu.be/aSVaUGHxFi4
https://youtu.be/aSVaUGHxFi4
https://doi.org/10.1145/3372297.3420013
https://doi.org/10.1145/3372297.3420013

to ease the data access. The difference between this paper and our
previous paper [9] is that our previous work focuses on how to
collect the data and how to conduct the measurement, but this
paper describes how the data is organized and how it enables future
research opportunities.

Our contributions are summarized as the following.
• We organize a large set of VirusTotal labels into VTSet and
build tools to access it.

• We identify several prediction tasks that can be conducted
and evaluated using VTSet.

VTSet can be downloaded using the following link: https://drive.
google.com/file/d/1jSCPeEM3pHFkceSjQyngEuVlWFVbzjFb.

2 DATASET DETAILS
This section presents VTSet in detail. As shown in Figure 1, VTSet
contains three components: the collected VirusTotal data, an inter-
active tool (“display.py”) to display measurement results in [9],
and a query tool (“query.py”) to select a part of the labeling data
for further analysis.

2.1 Directory Structure and Data Format
There are four sub-directories in VTSet. We explain their content
and related file formats as follows.
FInfo. For each of the 14,423 monitored files, FInfo contains a
JSON file with the file information returned by VirusTotal. The file
information can be roughly divided into hash values (e.g., SHA256),
metadata (e.g., file size), and information extracted by relatively
deep analysis (e.g., imported DLLs).
DResults. DResults contains 378 JSON files, each of which is
named as a date in the data collection window and contains Virus-
Total engines’ detection results on that day. Each JSON file indexes
the 14,423 monitored files using their SHA256 hash values, and
then indexes engines’ detection results using engines’ names.
QResults. VTSet allows its users to select a portion of the label-
ing data using the query tool. All selected data will be saved under
a sub-directory of QResults.

The preprocessed data used in [9] is placed under sub-directory
QResults/usenix, and it can serve as an illustration for the format
of files under QResults. Since we focus on how engines change
their labels (e.g., from malicious to benign) in [9], we create a sepa-
rated file for an engine’s detection results. Each file has 14,423 lines
representing an engine’s results on the 14,423 files. Each line has
two components, one is a file’s SHA256 hash, and the other is a label
sequence containing 396 numbers with “0” representing benign, “1”
representing malicious, and “2” representing an unavailable result.
Figure 2(a) shows the visualized label sequence when AegisLab
analyzes a file throughout the data collection window.
Scripts. All scripts that support the functionality of display.py
and query.py are placed under directory Scripts.

2.2 Displaying Measurement Results
VTSet provides an interactive tool display.py to exhibit measure-
ment results discussed in [9]. display.py can be executed in a
terminal using a command of the following form.

python3 display.py <dataset> <options>

0 100 200 300
day

0

1

la
be
l

(a) The complete sequence

0 100 200 300
day

0

1

la
be
l

(b) The sequence after removing hazard flips

Figure 2: An example file’s label sequence from AegisLab.

<dataset> specifies a sub-directory under QResult containing
a piece of preprocessed data generated by query.py, e.g., usenix.
<options> can be any of the following alternatives:

1) -cf or --count-flips: count the number of flips. A flip refers
to a change between two consecutive labels, i.e., “malicious” →
“benign” or “benign”→ “malicious”.We use “0” to represent a benign
label and use “1” for a malicious label. Thus, a flip can be represented
as “01” or “10”. Users can count flips per file, per engine, or per week,
by using --file, --engine, or --week as an extra parameter.

2) -ch or --count-hazard-flips: count hazard flips. Given a
file, a VirusTotal engine sometimes flips its label on one day and
then quickly changes it back the next day. We use “hazard” to
represent this phenomenon. Specifically, a hazard is represented as
“010” or “101”. A hazard contains two hazard flips. We can see that
the label sequence in Figure 2(a) contains many hazards. A hazard
can last for multiple days. Users can count hazard flips per file, per
engine, or per week, by providing the corresponding parameter.

3) -cnh or --count-non-hazard-flips: count non-hazard flips.
After removing hazard flips, a label sequence only contains non-
hazard flips (e.g., Figure 2(b)).

4) -csf <x> or --comp-stable-files <x>: compute the per-
centage of files whose VirusTotal labels do not change since day-𝑥
until the end of the label sequences. Users can use --exclude <n>
to exclude the top 𝑛 engines with most flips.

5) -cfi <t> or --comp-flip-impact <t>: compute the percent-
age of files with only benign aggregated labels, with only malicious
aggregated labels, and with both benign and malicious aggregated
labels during the data collection, when considering a file as mali-
cious if 𝑡 or more than 𝑡 engines detect the file as malicious. To
measure the percentage of files having different aggregated labels
on different days, users can estimate the impact of flips on the
threshold-based aggregation method.

6) -cs <A> or --compute-similarity <A> : compute
the average similarity of detection results between engine 𝐴 and 𝐵
on the same file over the whole dataset.

7) -c <t> or --clustering <t>: report the hierarchical cluster-
ing results when choosing 𝑡 as the threshold. The distance between
a pair of engines is computed as one minus the similarity between
the two engines’ detection results.

8) -pir or --print-influence-ranking: print the influence
ranking. In [9], we used a graph to measure influence between
VirusTotal engines. In this complete, directed graph, nodes repre-
sent engines, and weights on directed edges represent the influence
score between the two engines. An engine with larger weights on
its outgoing edges has more influence on other engines, while an
engine with larger weights on its incoming edges is more likely to

Demo CCS '20, November 9–13, 2020, Virtual Event, USA

2082

https://drive.google.com/file/d/1jSCPeEM3pHFkceSjQyngEuVlWFVbzjFb
https://drive.google.com/file/d/1jSCPeEM3pHFkceSjQyngEuVlWFVbzjFb

be influenced by others. We designed an active model and a pas-
sive model to compute the weights, and users can choose between
the two models by using --active or --passive. Users can also
choose between “01” flips and “10” flips using --one or --zero.

9) -vi or --visualize-influence: we use Gephi [1] to visu-
alize the computed influence graph. Similarly, users can choose
between the passive model and the active model, and choose be-
tween the usage of “01” flips and the usage of “10” flips.

2.3 Querying VTSet
query.py is a query tool to select a part of the labeling data based
on a user-provided configuration file. config.html is a GUI tool
to facilitate users to specify their requirements and generate cor-
responding configuration files. query.py can be invoked using a
command in the following format:

python3 query.py <config> <dataset>
<dataset> specifies a sub-directory name under QResults to

save the selected data. <config> is a json file that describes what
labeling data to be selected, and it is generated by config.html.

3 RESEARCH OPPORTUNITIES
VTSet captures VirusTotal engines’ labeling behavior on a daily
basis over a year. Thus, it enables many prediction tasks (by pro-
viding training data and ground-truths). We briefly discuss these
tasks as follows.

First, can we predict an engine’s label on a given file in the
near future or in the long run? In our previous work, we identified
engines whose labels that are highly correlated with each other
and engines whose labeling decisions are highly influenced by
other engines [9]. Therefore, it is promising to predict an engine’s
detection decision on a file based on other engines’ detection results
on the same file. Since an engine may take some time to react to
other engines’ behavior, we think it is more reasonable to predict
an engine’s label on a file after a relatively long period of time.

Second, can we predict the stability of an engine’s label on a
given file? We found that some engines have many more label flips
than other engines, and label flips are more likely to happen on
some files [9]. An interesting prediction task is to know how likely
an engine would change its label on a file, or whether an engine’s
label has become stable on the file. If an engine’s label on a file has
already been stable, the label is more trustworthy, compared with
a label that is predicted to be changed in the future.

Third, can we predict whether a file’s VirusTotal labels can even-
tually become stable? In our previous measurements, we found that
some files’ VirusTotal labels are very difficult to become stable, and
VirusTotal engines still change their detection decisions on these
files even after the files have been submitted to VirusTotal for more
than a year [9]. It is interesting to categorize these files’ features
and detect files whose VirusTotal labels remain dynamic. For these
files, leveraging manual inspection to infer their true labels is more
reasonable than using the anti-malware analysis on VirusTotal.

Fourth, can we predict an engine’s behavior for a particular
malware family? VirusTotal also provides malware family names
assigned by its engines. VTSet also records this information. In-
tuitively, different engines have different capabilities of analyzing

different malware families and an engine’s behavior on a partic-
ular malware family may be different from its overall behavior
when analyzing all families. Thus, we can explore how to conduct
fine-grained prediction on each malware family using VTSet.

Fifth, how to predict the results of threshold-based label aggre-
gation? Since label changes are very common on VirusTotal, it is
important to predict whether a threshold can be met for the number
of engines that detect a file. It is promising to leverage our observa-
tions in [9] (e.g., highly influenced engines, engines with similar
results) to do the prediction.

4 RELATEDWORK
There are previous works on evaluating VirusTotal engines or ag-
gregating VirusTotal labels. Peng et al. [7] inspected how Virus-
Total’s URL scanning engines detect phishing URLs over a month.
Kantchelian et al. [5] proposed a machine learning model to ag-
gregate VirusTotal labels. Previous researchers also tried to ag-
gregate malware family names provided by different VirusTotal
engines [4, 6, 8]. Different from the data collected by these previous
works, VTSet contains daily snapshots of VirusTotal labels on a
large set of randomly sampled PE files. VTSet is built through mon-
itoring VirusTotal over one year. Users can observe fine-grained
label changes or malware family changes using VTSet and explore
how to predict these changes.

5 CONCLUSION
In this paper, we presented VTSet, which is the first available dataset
with fine-grained recording of VirusTotal engines’ labeling behavior
over a long period of time. VTSet can serve as a benchmark set for
many prediction tasks on how VirusTotal labels change over time.
Future work can consider adding more data to VTSet and extending
it to other file types.

ACKNOWLEDGEMENT
This research was supported in part by a Seed Grant award from the
Institute for Computational and Data Sciences at the Pennsylvania
State University.

REFERENCES
[1] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open

source software for exploring and manipulating networks. In ICWSM, 2009.
[2] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing Huang,

Wei Zou, and Peng Liu. Finding unknown malice in 10 seconds: Mass vetting for
new threats at the google-play scale. In USENIX Security, 2015.

[3] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna. Analyzing and
detecting malicious flash advertisements. In ACSAC, 2009.

[4] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F
Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. Euphony: Har-
monious unification of cacophonous anti-virus vendor labels for android malware.
In MSR, 2017.

[5] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. Better malware
ground truth: Techniques for weighting anti-virus vendor labels. In AISec, 2015.

[6] Aziz Mohaisen and Omar Alrawi. Av-meter: An evaluation of antivirus scans and
labels. In DIMVA, 2014.

[7] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Opening the blackbox of
virustotal: Analyzing online phishing scan engines. In IMC, 2019.

[8] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A
tool for massive malware labeling. In RAID, 2016.

[9] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. Measuring and modeling the label dynamics of online anti-malware
engines. In USENIX Security ’20, Boston, MA, 2020.

Demo CCS '20, November 9–13, 2020, Virtual Event, USA

2083

	Abstract
	1 Introduction
	2 Dataset Details
	2.1 Directory Structure and Data Format
	2.2 Displaying Measurement Results
	2.3 Querying VTSet

	3 Research Opportunities
	4 Related Work
	5 Conclusion
	References

