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ABSTRACT
Most spectrum distribution proposals today develop their
allocation algorithms that use conflict graphs to capture in-
terference relationships. The use of conflict graphs, how-
ever, is often questioned by the wireless community because
of two issues. First, building conflict graphs requires signifi-
cant overhead and hence generally does not scale to outdoor
networks, and second, the resulting conflict graphs do not
capture accumulative interference.

In this paper, we use large-scale measurement data as
ground truth to understand just how severe these issues are
in practice, and whether they can be overcome. We build
“practical”conflict graphs usingmeasurement-calibrated prop-
agation models, which remove the need for exhaustive signal
measurements by interpolating signal strengths using cal-
ibrated models. These propagation models are imperfect,
and we study the impact of their errors by tracing the impact
on multiple steps in the process, from calibrating propaga-
tion models to predicting signal strength and building con-
flict graphs. At each step, we analyze the introduction, prop-
agation and final impact of errors, by comparing each inter-
mediate result to its ground truth counterpart generated
from measurements. Our work produces several findings.
Calibrated propagation models generate location-dependent
prediction errors, ultimately producing conservative conflict
graphs. While these “estimated conflict graphs” lose some
spectrum utilization, their conservative nature improves reli-
ability by reducing the impact of accumulative interference.
Finally, we propose a graph augmentation technique that
addresses any remaining accumulative interference, the last
missing piece in a practical spectrum distribution system
using measurement-calibrated conflict graphs.
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1. INTRODUCTION
Current reforms in radio spectrum management promise

to spur rapid growth of wireless technologies, by using on-
demand spectrum auctions and secondary markets [3, 50].
In an ideal scenario, these markets not only maximize profit
for spectrum owners, but also allows spectrum users, e.g.
small cell providers, to purchase spectrum on-the-fly and
receive exclusive usage of allocated spectrum without the
hassle of sharing.

Achieving this goal requires two tightly-coupled compo-
nents: an accurate model of interference patterns among cur-
rent spectrum users, and an allocation algorithm that uses
this interference model to distribute spectrum efficiently.
For spectrum, this means maximizing utilization by paral-
lelizing non-interfering transmissions whenever possible.

The majority of prior works have chosen to develop alloca-
tion algorithms under an abstract interference model called
“conflict graphs” [20]. As the name suggests, a conflict graph
is a simple graphical representation of the interference condi-
tion between any two spectrum users1. This simple interfer-
ence structure greatly simplifies spectrum allocation design,
leading to a series of highly efficient allocation algorithms
with bounded performance and polynomial complexity [10,
13, 22, 32, 38, 43, 50]. In contrast, alternative physical in-
terference models are highly complex, and have been shown
in existing studies to produce unbounded performance loss
when used to build allocation algorithms [9, 47].

As popular as they are, the practical value of conflict
graphs is often questioned by the wireless community for
two key reasons. First, building an accurate conflict graph
for a specific physical area is very challenging. Given the
complex nature of RF propagation, it requires detailed mea-
surements covering all combinations of sender/receiver loca-
tions. This type of per-link signal measurement is feasible
for indoor WLANs [5, 6, 26, 33, 39, 43, 45], but impractical
for the outdoor networks targeted by spectrum markets. As
a substitute, most current proposals build artificial conflict
graphs using a simple distance-based criterion [7, 10, 48] or
from signal strength values generated from simple RF propa-
gation models with rule of thumb parameters [18, 32]. While
these simplifications ease the process of designing and eval-
uating allocation algorithms, empirical studies have shown
that they produce incorrect interference results that lead to
poor performance [27, 34].

1For a specific frequency band, if two users can operate
concurrently without visible performance degradation, then
they do not conflict. Otherwise they conflict and are con-
nected with an edge (of the specific band) [35].
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Figure 1: Our high level methodology. We build estimated conflict graphs by collecting limited signal mea-
surements at a small number of randomly deployed sensors to calibrate a propagation model, and using
the results to predict signal strength values and construct the conflict graph. We examine the accuracy of
estimated conflict graphs by comparing them against measured conflict graphs built from exhaustive signal
measurements, using graph similarity and spectrum allocation benchmarks.

Second, because conflict graphs only define interference
conditions between any two spectrum users, they cannot
capture the impact of interference accumulated from mul-
tiple concurrent transmitters in the same frequency band.
Prior work [30] has shown that such“mismatch” leads to un-
predicted and harmful interference at allocated users, break-
ing the exclusive usage guarantee offered by the spectrum
market. Without guarantees that their transmissions would
operate without interference, users would have little incen-
tive to purchase from the spectrum market.

In this paper, we use a data-driven approach to gain a
better understanding of the severity of these two issues. We
use measurements as ground truth to quantify the severity of
errors produced by building conflict graphs without exhaus-
tive signal measurements, and to determine if these errors
impact users in the form of poor spectrum allocations. We
also seek to identify solutions to minimize these errors, and
in doing so, addressing the community’s main concerns and
promoting the continued use of conflict graphs in practice.

In our study, we build conflict graphs using measurement-
calibrated propagation models. Instead of performing ex-
haustive measurements, this approach performs measure-
ments on only a subset of locations. These results are used
to calibrate a propagation model, which is used to make sig-
nal strength predictions for all locations in the area. These
predictions are used in lieu of exhaustive measurements to
build the conflict graph. This approach has two advantages.
First, prior works have shown that measurement-calibrated
propagation models are much more accurate than those built
with rule-of-thumb parameters [19, 29, 31, 42]. Second, be-
cause measurements can be performed by sensors or even
trusted network subscribers, this approach incurs low over-
head, and can offer continuous measurements in real-time.
This allows conflict graphs to adapt to constantly changing
network environments and users. We recognize, however,
that calibrated propagation models are imperfect, and will
introduce errors in the predicted signal strength maps [14,
23, 36, 40]. So we must understand whether these errors
carry through to become errors in conflict graphs, and if
they impact the efficacy of spectrum allocations for users.

Our high level methodology is as follows:

• Use a relatively small number of signal measurements to
calibrate RF propagation models;

• Use models to build predicted signal strength maps, and
use those to produce “estimated conflict graphs”;

• Compare estimated conflict graph to “measured conflict
graph” built from exhaustive signal measurements, in the
form of missing or extraneous edges between the two;

• Evaluate end-to-end impact by running spectrum alloca-
tion on both conflict graphs and comparing them while
considering the impact of accumulative interference.

To the best of our knowledge, our work is the first em-
pirical study on the practical usability of conflict graph for
dynamic spectrum distribution. Our work differs from exist-
ing works on constructing conflict graphs. First, focusing on
outdoor environments, our work differs from prior work [5,
6, 26, 33, 39, 43, 45] that build indoor conflict graphs using
exhaustive signal measurements. Second, our work targets
dynamic spectrum markets where users requesting spectrum
are located at unplanned places and the resulting conflict
graph can be of arbitrary shape. This is fundamentally dif-
ferent from cellular networks [19, 29, 46] which optimize the
placement (and transmit power) of base stations to produce
conflict graphs of specific shapes.

Our measurement study leads to four key findings:

• Calibrated propagation models generate location-dependent
signal prediction errors. They are more likely to under-
predict signal strength at short distances, and overpredict
them for long distance links. We consistently observe this
pattern across multiple measurement datasets.

• These prediction errors lead to conservative conflict graphs
that rarely miss actual conflict edges, but commonly in-
troduce extraneous conflict edges.

• This leads to conservative spectrum allocations with uti-
lization loss compared to measured conflict graphs. These
extra edges, on the other hand, play a critical role in
reducing the impact of accumulative interference, thus
achieving more reliable links than allocations using only
measured conflict graphs.

• A simple graph augmentation technique can effectively
eliminate the artifact of accumulative interference from
both conflict graphs, boosting the reliability of spectrum
allocation to more than 96%. Once augmented, estimated
conflict graphs also achieve utilization that is more than
85% of the ideal allocation.

2. METHODOLOGY
Using real data, we seek to understand key issues when

using conflict graphs for dynamic spectrum distribution. We
consider conflict graphs built from measurement-calibrated
propagation models because they are practical, requiring lit-
tle measurement overhead, and much more accurate than
those built with rule-of-thumb parameters.

Our approach, shown in Figure 1, consists of four steps:
1) collecting real signal maps via measurements, and us-



ing them as ground truth; 2) using sampled subsets to cali-
brate propagation models, and predicting network-wide sig-
nal maps; 3) building conflict graphs from both measured
and predicted signal maps, and 4) quantifying the accu-
racy of estimated conflict graphs using measured graphs as
ground truth, via both graph similarity and spectrum alloca-
tion benchmarks. By examining both efficiency and reliabil-
ity of the allocation, we examine the impact of accumulative
interference. Next, we briefly describe our assumptions and
present each step in detail.

Assumptions. The basis of our study comes from wardriv-
ing measurements of outdoor municipal WiFi networks. We
assume that each spectrum user seeks to obtain one of the
WiFi channels each with the same propagation properties.
We use WiFi band as an example of distributing spectrum
among outdoor networks, and also because this is the only
outdoor network with known base station locations. Our
work can easily be extended to other frequency bands by
adjusting the propagation model to account for carrier fre-
quency differences [12, 41]. We leave this to a future work.

2.1 Collecting Signal Maps
Our study uses wardriving measurements of outdoor mu-

nicipal WiFi networks at three different cities, one of which
was collected by our own group. Each dataset consists of
beacon RSS values of WiFi access points (AP) measured in
a large outdoor area of size 3-7km2, along with the location
of each measurement and the locations of all APs. We av-
erage multiple RSS readings per location to derive a map of
average signal strengths for each participating AP. Table 1
summarizes the datasets.

GoogleWiFi. Collected by our research group in April
2010, this dataset covers a 7km2 residential area of the
Google WiFi network in Mountain View, California. Fig-
ure 2 shows the measurement locations (as blue dots) and
the APs (as red triangles). We used three co-located laptops
equipped with customized WiFi cards2 with higher receive
sensitivity than normal cards. Thus this dataset records de-
tailed signal strength values of 78 APs at 11,447 distinct lo-
cations (with an average 5m separation between nearby loca-
tions). More importantly, each location has signal strength
values of 6+ APs in average, 2-3 times more than the other
two datasets.

MetroFi. This dataset [2] consists of RSS values in a
7km2 area of an 802.11x municipal network in Portland,
Oregon. It was collected by a research group from Univer-
sity of Colorado in 2007. The dataset covers 30,991 distinct
measured locations of 70 APs with known GPS locations.
The average number of APs heard per location is only 2.3.

TFA. Collected by researchers from Rice University, this
measurement data covers 22 APs in a 3km2 area of the TFA
network in Houston, Texas [4]. It includes measurements
from 27,855 locations.

To use these datasets in our study, we treat each AP as
the transmitter of a spectrum market user, and any mea-
sured location in its coverage area as the receiver positions
of the market user. While our measurements are on WiFi

2We use WiFi cards from Wifly-City System Inc. Equipped
with a 7dBi external omni antenna and a dual amplifier, they
double the sensing range of standard WiFi cards. Following
FCC rules, we only use the RX path of the card to receive
beacons, with its TX path always turned off.

Table 1: Summary of the datasets used in our study

Area # of # of Avg. # of
Dataset size APs w/ measured APs heard

(km2) GPS info locations per location
GoogleWiFi 7 78 11,447 6.2
MetroFi 7 70 30,991 2.3
TFA 3 22 27,855 2.7
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Figure 2: Measured area in the GoogleWiFi dataset.
Red triangles are the APs detected and blue dots are
measured locations on the streets.

networks, both the measured signal maps and the resulting
conflict graphs are independent of specific MAC protocols
used. This is important, since it matches the exclusive us-
age scenario, where a spectrum market user is free to use
any MAC protocol in its authorized spectrum range.

2.2 Calibrating Propagation Models
To generate “estimated conflict graphs,”we use samples of

our measurements to calibrate existing propagation models.
We select several well-known models designed specifically for
urban street environments that match our datasets, includ-
ing the simple uniform path loss model, and complex mod-
els that support specific environmental features like streets
and building structures. We now describe our high-level ap-
proach to model calibration and signal map prediction. We
leave the detailed discussion on each model and their cali-
bration procedure to Section 3.

We begin by choosing sub-samples from the exhaustive
measurement data. Since the search for optimal sampling
methods is still an open problem [49], we randomly sample
our data, and vary the density of the sample data between
1.4 and 100 samples per km2. We then use the Minimum
Mean Squared Error (MMSE) fitting method to determine
the best-fit parameters for each propagation model. Once
the parameters have been calibrated for a given model, we
then interpolate the signal values at other locations to build
the complete signal strength map.

2.3 Constructing Conflict Graphs
We now have two signal strength maps, one from our ex-

haustive signal strength measurement data, and one inter-
polated from our calibrated signal propagation model. We
use them respectively to build a measured conflict graph, i.e.
ground truth, and an estimated conflict graph. These con-
flict graphs represent the interference patterns of spectrum
market users, where each spectrum market user maps to a



stationary transmitter, i.e. an AP in our signal maps, and
its coverage region corresponds to locations for its receivers.

The resulting conflict graph consists of a set of nodes,
each mapping to a spectrum market user, and a set of edges,
each representing a conflict between two nodes. To deter-
mine if two users conflict, we place their transmitters on
the same spectrum channel and examine whether they both
receive “exclusive spectrum usage.” A market user receives
exclusive spectrum usage if γ-percentile of its qualified trans-
missions have signal to noise and interference ratio (SINR)
above β [22]. Along with coverage area and transmit power,
γ and β are operating parameters configured by spectrum
market users in their spectrum purchase requests.

Consider two nodes i and j. Let SINRi,j
u represent the

SINR value at location u in node i’s coverage area: SINRi,j
u =

Si
u

Iju+N0
, u ∈ Ui, where Si

u is the received signal strength at

u from i’s transmitter, Iju is the interference strength from
j’s transmitter, N0 is the thermal noise, and Ui is the cover-
age area of i. We sort locations within each node’s coverage
area by their SINR, and determine conflict conditions using
the bottom (1 − γ)-percentile value. That is, node i and j
conflict if and only if for either of the two coverage areas,
the percentage of locations with SINR≥ β is less than γ:

pij = min(qij , q
j
i ) < γ, (1)

where qji =
|{u|u∈Ui,SINRi,j

u ≥β}|
|Ui|

. Here (1 − γ) represents
the percentage of coverage holes a spectrum user is willing
to tolerate to maximize capacity [1]. When γ = 1, eq. (1)
reduces to the minimal SINR-based criterion [9, 47, 48].

Configuring Coverage Area and β. For simplicity, we
assume each market user’s coverage area includes all mea-
surement locations whose SNR ≥ β. If a single location falls
into the coverage area of multiple users, we assume that it is
associated with the user that maximizes its signal strength.
We set β=10dB, which is the minimum SNR required to de-
code beacons in GoogleWiFi measurements. This allows us
to use all measurement locations in our graph analysis. We
have also experimented other β values (8–20dB). Since they
lead to the same trend, we omit the results for brevity.

2.4 Evaluating Graph Accuracy
Finally, we examine the accuracy of the estimated conflict

graphs and the artifact of accumulative interference not cap-
tured by these graphs. To do so, we compare the estimated
(measurement-calibrated) conflict graph against the mea-
sured conflict graph built directly from measurements. Our
analysis uses both graph similarity metrics and spectrum
allocation benchmarks.

For graph similarity, we perform edge-based comparison
of the two conflict maps, using the measured conflict graph
as ground truth. This produces a set of “extraneous edges”
and“missing edges” that capture the differences between the
estimated graph and the measured graph. We analyze the
patterns of extraneous and missing edges, and explain their
appearance based on errors in signal map prediction.

To understand the impact of graph edge errors on spec-
trum users, we feed each type of conflict graphs to two well-
known spectrum allocation benchmarks and compare the al-
location results. These end-to-end tests provide answers to
two questions: will the edge errors lead to significant loss in
spectrum efficiency and reliability, and will the“uncaptured”
accumulative interference also lead to significant loss?

In the following, we present detailed results of each of
our analysis steps. We begin by examining the accuracy
of signal map prediction using calibrated propagation mod-
els (Section 3). Then we build and compare measured and
estimated conflict graphs in terms of graph similarity (Sec-
tion 4) and spectrum allocation performance (Section 5).

3. SIGNAL PREDICTION ACCURACY
To examine the concern on the accuracy of measurement-

calibrated conflict graphs, we begin with understanding the
types of errors introduced when we use incomplete measure-
ments to calibrate propagation models and predict signal
strength values. More specifically, are there patterns in pre-
diction errors likely to manifest later as errors in conflict
graphs. Our goal is to answer the question: how accurate are
signal strength predictions made by measurement-calibrated
propagation models, and does receiver location play a role in
prediction accuracy? We take several representative prop-
agation models, calibrate them using controlled samples of
our measurement data, and evaluate their signal strength
predictions for locations missing from the sample, using the
full dataset as ground truth.

3.1 Propagation Models and Calibration
We choose four representative propagation models for our

work, because they capture urban street environments that
best match our datasets. They range from the simplest uni-
form pathloss model to sophisticated models that incorpo-
rate features like streets and changes in terrain.

Uniform Pathloss Model (Uniform) [14]. The sim-
plest and most-used model, this captures signal attenuation
over distance using a single pathloss exponent. Calibra-
tion is straightforward: use Minimum Mean Square Error
(MMSE) to determine the best-fit pathloss exponent.

Two-Ray Model (Two-Ray) [14]. This model uses
two pathloss exponents to capture the dual slope feature of
signal propagation in urban environments, i.e. signal atten-
uates faster after a certain distance. It offers higher accuracy
than the uniform pathloss model in urban street environ-
ments [16]. To calibrate this model, we partition the sample
measurements into two sets using a distance threshold, and
for each set we use a separate MMSE fitting to determine the
best-fit pathloss exponent. We also optimize the partition
to minimize the overall MMSE.

Terrain-based Model (Terrain) [42]. This model
leverages terrain information to capture the non-uniformity
of radio propagation caused by different terrains. It divides
the transmitter’s coverage area into sectors, and applies a
terrain-specific shadowing factor in each sector. We follow
the procedure in [42] to calibrate this model. Since we do
not have terrain information (street, buildings, etc.) for the
MetroFi and TFA datasets, we only provide results for our
GoogleWiFi dataset.

Street Model (Street) [15]. This model targets urban
microcell networks, and assumes that signals are constrained
to propagate along the streets along line-of-sight, with minor
reflection and/or diffraction to cross streets. To calibrate
this model, we categorize signal propagation into three types
based on the number of reflections it encounters. These
include those without any reflection, i.e. line-of-sight, those
with one reflection, and those with multiple reflections. We
divide measurement samples into these categories and train
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Figure 3: Probability density distributions of prediction errors using four calibrated propagation models.
The reference zero-mean Gaussian curves are also displayed for each calibrated model. Prediction errors
approximately follow zero-mean Gaussian distributions with standard deviation in [6, 6.6].

(a) Measured RSS (b) Prediction errors

Figure 4: (a) Spatial distribution of measured signal strength values. Signal strength generally follows
the power law, but varies significantly over space. Measurements could not be performed in areas with
buildings or obstacles, and they show up as blank areas in plots. (b) Areas of signal overprediction and
underprediction and absolute error values. Predictions use the Street model. Locations close to the AP tend
to be underpredicted while those further away tend to be overpredicted.

the parameters for each propagation type separately. Like
Terrain, this model requires street information, and thus can
only be calibrated using the GoogleWiFi dataset.

3.2 Signal Prediction Results
We quantify signal prediction errors as the difference be-

tween the predicted signal strength (in dBm) and the mea-
sured signal strength (in dBm). We observe prediction errors
that range from -30dB (under-prediction) to 30dB (over-
prediction). We make three key observations.

Observation 1: Impact of Sampling. To calibrate our
models, we randomly select sub-samples from the exhaustive
measurement data. We vary the density of these samples
from 1.4 to 100 samples per km2, or 10 to 700 total samples
for an area of size 7km2. For all four models, we observe
that increasing density beyond 34 samples per km2 (239
total samples) leads to negligible gain in performance. Thus
we use this sampling density for all our later tests. We
also observe that calibration often yields surprising results,
e.g. we find that the calibrated pathloss exponent for the
Uniform model varies between 1.15 and 2.20 for our three
datasets, while typical rule of thumb suggests 2 or 3.

Table 2: Standard deviation of prediction error

Dataset
Standard deviation

Uniform Two-Ray Terrain Street
GoogleWiFi 6.6 6.6 6.4 6.0
MetroFi 8.4 8.1 N/A N/A
TFA 7.6 7.4 N/A N/A

Observation 2: Impact of Models. We observe that
prediction errors are visible, but they do not vary signif-
icantly across models (the street model performs slightly
better). This matches prior work [14, 23, 36, 40]. Specif-
ically, prediction error varies across locations, and can be
approximated by a zero-mean Gaussian distribution. Fig-
ure 3 shows the probability density function (PDF) of the
prediction errors and its Gaussian approximation using the
GoogleWiFi dataset. The same trend holds for MetroFi and
TFA, and we omit those results for brevity. Table 2 lists the
standard deviation of the prediction error under each model
and dataset.

Observation 3: Impact of Receiver Location. When
examining the correlation between prediction error and loca-
tion, we observe that all four propagation models tend to un-
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Figure 5: As the distance to AP increases, the main prediction error gradually switches from underprediction
to overprediction. Here each data point summarizes the prediction errors within a distance interval of 0.05km.
We show results with distances < 0.55km because the number of data points above this range is insufficient
to demonstrate any trends.

derpredict signal strength in area near the transmitter, and
overpredict signal strength in areas far from the transmitter.

We illustrate this pattern graphically in Figure 4 by plot-
ting the measured signal strength distribution of a randomly
selected AP, and the levels of signal overprediction and un-
derprediction at different locations. We define signal over-
prediction (under-prediction) to be when the predicted sig-
nal strength is larger (smaller) than the actual value by more
than 1dB. This result shows a strong correlation between lo-
cations (in terms of their distance to the AP) and the type
of expected error.

A closer look shows that this effect is consistent across all
four propagation models and all three datasets. In Figure 5,
we sort each AP’s measurement locations by their distances
to the AP, and group them into buckets of 0.05km. For
each interval, we calculate the occurrence of locations with
accurate signal prediction (absolute error ≤ 1dB) and those
with overprediction and underprediction. We observe that
the trend is consistent across all settings.

One possible explanation is that these propagation mod-
els still cannot fully capture how RF signals in urban street
environments experience faster attenuation after traveling a
certain distance [16, 17, 14]. Although both the Terrain and
Street models seek to capture the impact of non-uniform
signal propagation, they still use the single-slope pathloss
model, and cannot fully reflect the dual slope feature of sig-
nal propagation. Thus the dual slope effect is more evident
on these models. The Two-Ray model considers this feature,
but is limited by the use of a uniform breakpoint distance
that does not exist in practice [17]. Thus we still observe
some errors for this model.

Summary of Findings. Our accuracy analysis shows
that propagation models, even after careful calibration, in-

troduce visible but location-dependent errors in signal map
prediction. This naturally leads to the question: how will
the signal prediction errors translate into errors in estimated
conflict graphs? We explore this question next.

4. CONFLICT GRAPH ACCURACY
Having analyzed the errors introduced by predictions from

calibrated signal propagation models, we now examine the
actual accuracy of the “estimated conflict graphs” produced
using these results. More specifically, we ask the question:
what is the impact of imperfect signal strength predictions on
the accuracy of their resulting conflict graphs? As before, we
use our measurement data as ground truth to produce“mea-
sured conflict graphs,” and use them to gauge the accuracy
of “estimated conflict graphs.”

Here, we use similarity between the conflict graphs as a
measure of the accuracy of estimated conflict graphs. Since
both types of conflict graphs share the same vertices, graph
similarity in this context reduces to a measure of overlap in
the set of edges between graphs. In addition, our analysis is
limited to the GoogleWiFi dataset, because lower receiver
sensitivity in the other datasets resulted in extremely sparse
conflict graphs with less than 20 edges. For each estimated
conflict graph, we use 50 random sampling sets to produce
50 graph instances. Since these graphs across different sam-
ples are highly similar (≤ 3 edge difference), we only show
average results here for brevity.

4.1 Graph Similarity Results
We compare each estimated conflict graph against the

measured conflict graph, and classify each edge in the es-
timated graph as correct, extraneous, or missing:
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Figure 7: (a) Edge errors in the estimated conflict graph, normalized
by the number of edges in the measured conflict graph. Negative
(positive) bars denote the normalized count of missing (extraneous)
edges. (b) Edge errors in the “modified” estimated conflict graph
by removing the location dependency of the prediction errors. The
amount of extraneous edges reduces significantly.
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Figure 6: Accuracy of an estimated conflict graph.

• Correct edges: edges found in both estimated and mea-
sured conflict graphs.

• Extraneous edges: edges in the estimated conflict graph
but not in the measured conflict graph; these edge er-
rors make the estimated conflict graph more conserva-
tive, reducing spectrum utilization.

• Missing edges: edges in the measured conflict graph
but missing in the estimated conflict graph; these er-
rors are more harmful than extraneous edges, because
they reduce the reliability of the estimated conflict
graph and lead to harmful interference when conflict-
ing nodes are assigned to the same channel.

Figure 6 shows a sample of estimated conflict graph gen-
erated using the Street model. Distances between nodes
are shown to scale. Compared to the measured conflict
graph with 162 edges, the estimated graph misses only 2
edges (thick red lines) and introduces 51 extraneous edges
(blue lines). While slightly conservative, the estimated con-
flict graph is able to capture most of the edges.

We then compute the normalized edge errors as the num-
ber of extraneous and missing edges normalized by the total
number of edges in the measured conflict graph. Figure 7(a)
shows the normalized edge errors as the value of γ varies.
We display normalized extraneous edges as positive values
and the normalized missing edges as negative values. The

results show that the majority of edge errors are extraneous
edges. Missing edges account for less than 2% of the edges
of the measured graph. This pattern holds across different
propagation models and for different values of γ.

Comparing across propagation models, we see that the
choice of propagation models has only minor impact on the
accuracy of the estimated conflict graph. The Uniform model
is the most conservative and generates a slightly higher ra-
tio of extraneous edges, and the Street model provides the
best overall performance. This is likely because of the higher
accuracy achieved by the Street model, which treats the re-
flected paths as the main components in non-line-of-sight
(NLOS) scenarios. As a result, it is more accurate for urban
street environments such as Mountain View, and leads to
less edge errors in estimated graphs.

Figure 7(a) also shows that the normalized occurrence of
extraneous edges decreases as γ increases. This is because
increasing γ lowers the bar for two nodes to conflict with
each other, thus producing more3 edges in the measured con-
flict graph, and shrinking the pool of potential extraneous
edges for the estimated graph. Thus the ratio of extraneous
edges decreases from 40-60% (γ = 0.8) to 5-8% (γ = 1).

4.2 Why Do Extraneous Edges Dominate?
The fact that extraneous edges dominate the errors can be

attributed to two factors. The first is the location-dependent
pattern of signal prediction errors described in Section 3. It
causes under-prediction of signal strength and over-prediction
of interference strength. Hence the majority (70+%) of pair-
wise SINR values are underpredicted, leading to many ex-
traneous edges.

To verify this hypothesis, we build a new set of modified
estimated conflict graphs using the same model-predicted
signal maps, but make the prediction error randomly dis-
tributed across locations. We use two methods to remove
the location dependency. The first method gathers the pre-
diction errors of the model-generated signal maps, shuffles
them randomly across different measurement locations, and
adds them back to the measured signal map. The second
method produces a synthetic pattern of prediction errors
from a zero-mean Gaussian distribution with standard de-

3As γ grows from 0.8 to 1, the edge counts of the measured
conflict graphs are 104, 132, 162, 243, 446, respectively.



viation of 6.5, and adds them to the measured signal map.
Figure 7(b) shows that normalized edge errors in these mod-
ified estimated graphs have much fewer extraneous edges
than their unmodified counterparts, only 5–15% vs. 5–60%.
This confirms our hypothesis.

The second factor contributing to more extraneous edge
errors is the fact that missing edge errors occur under more
stringent conditions, i.e. it takes more signal errors to re-
move an edge than to add an edge. To erroneously remove
an edge between i and j, both predicted ratios of conflict-
free locations (qji and qij , defined by Eq. (1)) must exceed
γ. In contrast, erroneously adding an edge between i and
j only requires one of these two estimates to fall below γ.
This factor explains why extraneous edges still outrun miss-
ing edges even after removing the location-dependency in
the prediction errors (Figure 7(b)).

We note that these extraneous edges are not due to pos-
sible under-measurement of interference in our dataset, i.e.
some weak interference signals may not be captured by our
measurement receivers. This is because when computing
SINR values used to build estimated graphs, we ignore in-
terferers whose signals are not captured by the dataset.

Can We Identify Extraneous Edges? Since extra-
neous edges make up most of our observed edge errors, it
is tempting to try to identify those edges in the estimated
conflict graph and correct them. After carefully examin-
ing our traces, we found no distinctive characteristics that
distinguish extraneous edges from correct edges. For exam-
ple, Figure 8 plots the value of pij (defined by Eq. (1)) for
each node pair i and j, calculated from the predicted signal
strength distribution. We use different markers to separate
the correct and extraneous edges. We see that there is no
clear distinction between the two sets.

4.3 Summary of Findings
Our graph accuracy analysis reveals two key findings:

Estimated conflict graphs are conservative. The
large majority of errors are extraneous edges; estimated
graphs rarely miss edges (<2%).

Location-dependent signal prediction errors are the
main cause of extraneous edges. The location-dependent
error pattern in signal prediction triggers under-prediction
of more than 70+% of SINR values, and is the main cause
of extraneous edge errors.

5. IMPACTONSPECTRUMALLOCATION
After examining the accuracy of estimated conflict graphs

at graph level, we now quantify the end-to-end impact of
such graph errors on spectrum market users. Also, given
the lack of representation of accumulative interference in
conflict graphs, we aim to understand how such artifact af-
fects the quality of the allocated spectrum. For this, we
distribute spectrum using both measured and estimated con-
flict graphs, and evaluate end-to-end performance in terms
of the efficiency of spectrum utilization and link reliability
of allocated spectrum.

5.1 Spectrum Allocation Benchmarks
To translate conflict graphs into actual spectrum alloca-

tions, we use two representative allocation algorithms. Both
seek to efficiently distribute a given spectrum range across

the market users, while ensuring that no conflicting users
receive the same spectrum band.

• Single channel allocation (SCA) seeks to allocate equal
amount of continuous spectrum frequencies to each spec-
trum market user. This problem reduces to the well-
known graph-coloring problem, which uses the minimal
number of channels to ensure that each market user re-
ceives one channel and does not conflict with another [38].
The fewer the number of channels required, the greater the
bandwidth assigned to each channel.

• Multi-channel allocation (MCA) divides the spectrum range
into a large number of channels. Each market user can re-
ceive multiple channels even if they are not continuously
aligned in frequency [10]. MCA distributes the channels
across market users to maximize a predefined system util-
ity, e.g. proportional fairness [10].

We evaluate the resulting spectrum allocation based on:

• Spectrum efficiency: the average amount of spectrum re-
ceived per market user, normalized by the available spec-
trum. We calculate it by counting the number of channels
the market user receives and the frequency bandwidth of
each channel.

• Spectrum reliability: whether each market user actually
receives exclusive spectrum usage. A market user has re-
ceived exclusive usage if on each assigned channel, the
percentage of receivers whose actual SINRs exceed β is
no less than γ. This is to evaluate the actual outcome
of spectrum usage in terms of end-user coverage. For our
purposes, we use network-level spectrum reliability, which
is defined as the percentage of market users receiving ex-
clusive spectrum usage.

Given a spectrum allocation, we use our full dataset to
calculate the actual SINR observed at each market user’s
receiver locations. The actual SINRs of each user include
interference accumulated from all other market users oper-
ating on the same channel, which captures the true per-
formance perceived by any allocated market user. While
it is well known that the lack of coverage on accumulative
interference will affect spectrum allocations under conflict
graphs, our goal is to understand the severity of such degra-
dation, and seek solutions to effectively suppress them.

5.2 Spectrum Allocation Results
Spectrum Efficiency. Figure 9 compares the spec-
trum efficiency of using the measured and estimated conflict
graphs in allocating spectrum. Because extraneous conflict
edges will prevent some non-conflicting users from reusing
spectrum, spectrum efficiency using estimated graphs is lower
than that of the measured graph. The efficiency loss, how-
ever, never exceeds 30%, even for cases where estimated
graphs introduce 40%–60% extra edges (those with γ = 0.8).
The loss of efficiency also reduces as γ increases, because the
amount of extraneous edges reduces significantly. As before,
the Street model outperforms the other models modestly be-
cause of its higher accuracy in signal prediction, which leads
to less edge errors in the resulted conflict graph.

Spectrum Reliability. Using the actual SINR as the
metric, we now examine the link reliability of the allocated
spectrum. As expected, we see from Figure 10 that the
reliability is not 100% for both allocation algorithms. Unless
γ = 1, the measured conflict graph makes 10–50% of market
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ing measured and estimated con-
flict graphs to distribute spectrum.
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leads to spectrum efficiency loss,
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Figure 10: Spectrum reliability when using measured and estimated
conflict graphs to distribute spectrum. The reliability is between 80%-
98% for the estimated graph and drops to 50% for the measured con-
flict graph. This indicates that the impact of accumulative interference
is noticeable and it is not captured by these conflict graphs.
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Figure 11: Reliability violations increase with the
AP density. γ = 0.9, using measured conflict graphs.
For the GoogleWiFi dataset, the AP density is 11
APs per km2.

users unsatisfactory. In comparison, the estimated graphs
actually lead to more reliable spectrum usage for market
users because of having extraneous edges. In this regard,
the extraneous-edge errors help ensure spectrum reliability.

The results demonstrate that accumulative interference
does cause noticeable impact on the spectrum usage. Be-
cause interference experienced by a receiver is the accumula-
tive sum of signals from transmitters operating on the same
frequency band, the higher the spectrum reuse in the neigh-
borhood, the higher the level of accumulative interference.
When using the measured conflict graph, the spectrum reuse
level is very high, e.g. 30 market users per channel for γ =
0.8. Therefore the effect of accumulative interference is sig-
nificant. As γ increases, the reuse level decreases, and so
does the effect of accumulative interference. For estimated
conflict graphs, their conservative allocation from extrane-
ous conflict edges reduces spectrum reuse, and thus the level
of accumulative interference. This effect also motivates us
to further examine the conditions under which accumulative
interference would be a prevalent effect.

How Prevalent Is Accumulative Interference? In
contrast to our results, prior work on a 32-node network
reports that accumulative interference has negligible effect
on wireless transmissions [11]. This begs the question: under
what conditions will accumulative interference matter? To
answer this, we first examine the spatial locations of the

market users with reliability violations in our GoogleWiFi
dataset. We see that most of them are clustered in the center
of the physical area with high market user density. This
indicates that node density is a large contributing factor.

To examine the impact of node density, we build a set of
new market configurations by sampling the APs in GoogleWiFi
dataset uniformly, while keeping each AP’s coverage area
unchanged. For each new configuration, we build a con-
flict graph from the exhaustive signal measurements, and
examine its reliability using the MCA allocation. Figure 11
shows the percentage of market users with reliability vio-
lations, which grows with the AP density. For the cur-
rent GoogleWiFi network, the average density is 11 APs
per km2, which is common for municipal wireless networks.
Thus we conclude that accumulative interference does mat-
ter in many current and future wireless deployments. We
must address such artifact in order to use conflict graphs in
practice.

6. GRAPH AUGMENTATION
The spectrum reliability violations we found for both mea-

sured and estimated conflict graphs are clearly undesirable
for the practical deployment of spectrum markets. In this
section, we seek for solutions to eliminate the artifact of
accumulative interference for both conflict graphs. This en-
sures exclusive spectrum usage with reasonable level of re-
liability, addressing the key concerns on conflict graphs and
promoting their practical usage.

6.1 Challenges
To reduce the impact of accumulative interference, one

intuitive method is to augment the existing conflict graphs
by adding more edges and making them more conservative.
This essentially reduces the number of users who get allo-
cated with the same spectrum channel, thus the amount of
accumulative interference. However, adding more edges in-
evitably leads to loss in spectrum efficiency. Hence the key
challenge is to minimize the number of edge additions while
eliminating the artifact of accumulative interference.

To show the level of difficulty in this task, let us begin
with two straw-man solutions. The first solution is to ran-
domly add edges to unconnected node pairs (referred to as
Random). A smarter alternative is to first sort unconnected
node pairs by the physical distance between their transmit-
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Figure 12: The performance of graph augmentation. The estimated graphs are generated from the Street
model. (a)-(b) Spectrum reliability results before and after graph augmentation, using different augmentation
algorithms (Greedy-Feedback, Locality-based, and Random). Greedy-Feedback is highly effective, and out-
performs the other two. (c) Spectrum efficiency before and after graph augmentation via Greedy-Feedback.
The improvement in reliability is at the cost of slightly degraded spectrum efficiency. The gap between
measured and estimated graphs reduces to less than 15% after augmentation.

ters, and only add edges to the top-K closest node pairs.
We refer to this approach as Locality-based augmentation.
While simple, these two solutions face two drawbacks: 1)
each added edge might not effectively reduce accumulative
interference; and 2) it is difficult to determine the correct
number of edges to add.

6.2 Greedy-Feedback Graph Augmentation
We overcome the above challenge by proposing a greedy

algorithm to gradually and intelligently add edges. This
algorithm stops adding edges when the (estimated) reliabil-
ity reaches 100%, assuming wireless interference is the only
source of reliability loss. Because the level of accumulative
interference depends on the spectrum allocation algorithm,
we integrate graph augmentation with spectrum allocation.

More specifically, the augmentation procedure works as
follows. After allocating spectrum using the current conflict
graph, we examine the reliability performance of each node,
and identify the node i with the lowest reliability and its
worst channel m. Next, we find node j, who is currently
allocated with channel m, and whose removal will lead to
the largest reliability improvement at i. We then add an
edge between node i and j, and repeat the above process
until all nodes have met the reliability requirement γ.

We use this approach to augment both measured and es-
timated conflict graphs. The only difference is that when
augmenting a measured graph, we compute reliability using
the real signal strength map. In contrast, we augment es-
timated graphs by estimating reliability from the predicted
signal strength map.

6.3 Evaluation Results
We evaluate the effectiveness of our augmentation algo-

rithm by comparing spectrum reliability and efficiency be-
fore and after augmentation. Our evaluation uses the MCA
allocation since it suffers more accumulative interference.

Effectiveness of Graph Augmentation. In Figure 12(a)-
(b), we first compare the three augmentation techniques in
terms of spectrum reliability. For a fair comparison, we ap-
ply Random and Locality-based augmentation to add the
same number of edges as that of Greedy-Feedback.

Greedy-Feedback graph augmentation is highly effective
and significantly outperforms the other two techniques. It

completely removes the impact of accumulative interference
on the measured conflict graph, and boosts the reliability
of the estimated graphs to 96+%. The reliability of esti-
mated graphs is not always 100%, because the augmenta-
tion algorithm relies on reliability predictions from signal
strength estimates. In contrast, Random graph augmen-
tation leads to no visible improvement on reliability while
Locality-based augmentation is half way between Random
and Greedy-Feedback.

By adding edges, graph augmentation does lead to lower
spectrum efficiency. From Figure 12(c), we see that by using
Greedy-Feedback, we get relative efficiency loss between 0–
25% for the measured graph and 0–15% for the estimated
graphs. The loss for the estimated graphs is lower because it
adds less number of edges. We see that the proposed graph
augmentation is effective against accumulative interference.

We also observe that graph augmentation has no effect
when γ = 1. This is because both types of conflict graphs
already contain a large number of edges (440+). The result-
ing spectrum allocation has very limited reuse across users,
and the impact of accumulative interference is negligible.

Accuracy of Augmented Conflict Graphs. Apply-
ing graph augmentation to our measured conflict graph pro-
duces an ideal conflict graph, one that captures real conflicts
and the impact of accumulative interference. We now look
at how close the augmented, estimated conflict graph is rel-
ative to this ideal graph. Figure 13(a) plots the normalized
edge errors of the estimated graphs after graph augmenta-
tion. The ratios of extraneous edges reduce from 5%-60%
(Figure 7(a)) to 5%-40%, while the ratios of missing edges
remain similar. This is because the augmentation on the
measured graph adds more edges, and some of these edges
already appear in the estimated graph.

Finally, we look at the spectrum efficiency and reliabil-
ity of the estimated graph after augmentation, and see that
both have improved relative to the ideal graph. Figure 13(b)-
(c) show that the use of estimated conflict graphs achieves
nearly 100% spectrum reliability and only leads to at most
21% loss in spectrum efficiency. Overall, we see that the
Street model is the most efficient (≤ 15% efficiency loss,
96+% reliability) among the four propagation models.
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Figure 13: Accuracy of augmented estimated conflict graphs using the four propagation models, compared to
the ideal conflict graph. (a) The edge errors reduce considerably with graph augmentation. (b) The reliability
of using estimated graphs in spectrum allocation increases to 96+%. (c) The efficiency loss of using estimated
graphs reduces to no more than 21%.

Key Findings. We summarize the key results on graph
augmentation as the following two findings:

• Graph augmentation is effective against accu-
mulative interference. Proper graph augmentation
effectively boosts spectrum reliability to 96-100%, while
maintaining spectrum efficiency.

• Augmentation improves the accuracy of esti-
mated conflict graphs. Augmentation reduces the
difference between measured and estimated conflict graphs.
Using estimated graphs in spectrum allocation results
in only 15% or less loss in spectrum efficiency.

7. DISCUSSION
We discuss possible extensions of our methodology beyond

the scenarios covered by our study.

Temporal Signal Variations. Our work focuses on the
long-term impact of interference by considering the average
signal values. To understand the impact of temporal signal
variations, we can adapt the conflict graphs based on period-
ical sensor measurements. For applications that must con-
sider fast signal fading, the conflict edge can be determined
using the outage SINR, the bottom x% of SINR observed
within a certain time period. Examining the accuracy of
such conflict graphs is an interesting future study.

Incorporating MAC Protocols. Our analysis does
not consider the impact of MAC protocols because in the
exclusive usage scenario, a spectrum market user can use
any MAC protocol [3, 50]. However, for scenarios where all
the users adopt the same MAC protocol, one can integrate
a traffic-driven model [25, 43] into the conflict graph.

8. RELATED WORK
Conflict Graphs and Interference Models. We di-
vide existing works into two categories based on the type of
conflict graphs they use. The first category uses per-link sig-
nal measurements to capture interference conditions among
individual links, using either active measurements [5, 6, 26,
33, 34, 37, 39, 43], or passive measurements [8, 21, 28, 45].
These link-based conflict graphs are for indoor WiFi net-
works where transmission links are known a priori. They
are impractical for outdoor networks with mobile users that
spectrum markets target.

The second category of works builds coverage-based con-
flict graphs based on propagation models, either with rule-
of-thumb parameters [18, 32, 48], or calibrated by on-site
measurements [24]. However, no one has used real-world
measurements to evaluate the conflict graph accuracy. Our
work is the first measurement study on this problem. We use
both graph and spectrum allocation analysis to understand
the feasibility of building accurate coverage-based conflict
graphs for dynamic spectrum distribution.

Aside from conflict graphs, recent work examines the accu-
racy of general interference models for small-scale networks
using per-link measurements [27]. Our work was inspired
by this work, yet focuses on large-scale outdoor networks
where per-link measurement is infeasible. We use conflict
graphs as interference models because they are widely used
by spectrum allocation solutions. Our methodology can be
extended to other interference models such as SINR [9, 47].

Measurement-calibrated Propagation Models. Mea-
surement studies show that RF propagation models with
rule-of-thumb parameters introduce large errors in signal
strength estimation [14, 23, 36]. When calibrated using on-
site measurements, however, these propagation models offer
higher accuracy, and have been used in cell planning [19, 29],
interference management [40] and coverage prediction [31,
42]. Our work complements these prior works, and is also
inspired by prior work on measurement-calibrated models
for social network graphs [44].

9. CONCLUSION
Using large-scale signal measurements, we examined the

severity of two key concerns on using conflict graphs for dy-
namic spectrum distribution. We focused on conflict graphs
built from measurement-calibrated propagation models, and
studied their accuracy and the end-to-end impact on spec-
trum allocation. We found that the resulting “estimated
conflict graphs” are conservative compared to precise con-
flict graphs built from exhaustive signal measurements. Yet
surprisingly, these extraneous edges improve link reliability
by alleviating the impact of accumulative interference, an
artifact not captured by conflict graphs. We proposed a
graph augmentation technique to suppress the impact of ac-
cumulative interference. With this new technique, estimated
conflict graphs can produce spectrum allocations that pro-
vide near-perfect link reliability, with spectrum efficiency



less than 15% away from the ideal allocation. We believe
that for the WiFi frequencies studied by this paper, (and
their nearby frequencies), our proposed techniques address
existing concerns on conflict graphs, and provide a scalable
and accurate end-to-end solution for spectrum allocation.
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