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ABSTRACT
Social media is often viewed as a sensor into various societal events
such as disease outbreaks, protests, and elections. We describe
the use of social media as a crowdsourced sensor to gain insight
into ongoing cyber-attacks. Our approach detects a broad range of
cyber-attacks (e.g., distributed denial of service (DDoS) attacks, data
breaches, and account hijacking) in a weakly supervised manner
using just a small set of seed event triggers and requires no train-
ing or labeled samples. A new query expansion strategy based on
convolution kernels and dependency parses helps model semantic
structure and aids in identifying key event characteristics. Through
a large-scale analysis over Twitter, we demonstrate that our ap-
proach consistently identifies and encodes events, outperforming
existing methods.

CCS CONCEPTS
• Information systems→Datamining; Information retrieval;
Information retrieval query processing; Retrieval models and rank-
ing; Similarity measures; • Computing methodologies→ Infor-
mation extraction; Natural language processing; Artificial intelli-
gence;

KEYWORDS
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1 INTRODUCTION
Cyber-attacks are now widespread, e.g., most recently of the US
Democratic National Committee and at companies such as Sony,
Verizon, Yahoo, Target, JP Morgan, Ashley Madison as well as at
government agencies such as the US Office of Personnel Manage-
ment. Consequences and implications of cyber-attacks range from
data leaks about sensitive personal information about users to po-
tential to cause loss of life and disruptions in critical infrastructure.
To develop adequate cyber-defenses it is imperative to develop
good ‘ground truth’, i.e., an authoritative record of cyber incidents
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reported in the media cataloged alongside key dimensions. Avail-
ability of high quality ground truth events can support various
analytics efforts, e.g., identifying precursors of attacks, developing
predictive indicators using surrogate data sources, and tracking the
progression of events over space and time.

It has been well argued that, because news about an organiza-
tion’s compromise sometimes originates outside the organization,
one could use open source indicators (e.g., news and social media)
as indicators of a cyber-attack. Social media, in particular, turns
users into social sensors empowering them to participate in an
online ecosystem of event detection for happenings such as disease
outbreaks [31], civil unrest [20, 37], and earthquakes [29]. While
the use of social media cannot fully supplant the need for internal
telemetry for certain types of attacks (e.g., use of network flow data
to detect malicious network behavior [4, 12, 21]), analysis of such
online media can provide insight into a broader range of cyber-
attacks such as data breaches, account hijacking and newer ones as
they emerge.

At the same time it is non-trivial to harness social media to
identify cyber-attacks. Our objective is to detect a range of different
cyber-attacks as early as possible, determine their characteristics
(e.g., the target, the type of attack), in an weakly supervised manner
without any requirement for training phase or labeled samples.
Prior work (e.g., [27]) relies on trainingwith annotated sampleswith
fixed feature sets which will be unable to capture the dynamically
evolving nature of cyber-attacks over time and are also unable to
encode characteristics of detected events, as we aim to do here.

Our main contributions are:

• A framework for cybersecurity event detection from
online social media. We propose a dynamic typed query
expansion approach that requires only a small set of general
seed event triggers and learns to map them to specific event-
related expansions and thus provide situational awareness
into cyber-events in an unsupervised manner.
• Anovel query expansion strategy based ondependency
tree patterns. To model typical reporting structure in how
cyber-attacks are described in social media, we propose a dy-
namic event trigger expansion method based on convolution
kernels and dependency parses. The proposed approach also
employs a word embedding strategy to capture similarities
between event triggers and candidate event reports.
• Extensive empirical evaluation for three kinds of cyber-
attacks. We manually catalog ground truth for three event
classes—distributed denial of service (DDoS) attacks, data
breaches, and account hijacking—and demonstrate that our

https://doi.org/10.1145/3132847.3132866


approach consistently identifies and encodes events outper-
forming existing methods.

2 PROBLEM SETUP
The input to our methodology is a collection of time-ordered tweets
D = {D1,D2, . . . ,Dp } organized along p time slots. Let D denote
the tweet space corresponding to a subcollection Di , letD+ denote
the target tweet subspace (in our case, comprising cyber-attack
events), and let D− = D − D+ denote the rest of the tweets in the
considered tweet space.

Definition 1. Typed Dependency Query: A typed dependency
query is a linguistic structure that characterizes a semantically co-
herent event related topic. Different from n-grams, terms contained
in a typed dependency query share both syntactic and semantic
relationships. Mathematically, a typed dependency query is for-
mulated as a tree structure G = {V ,E}, where node v ∈ V can be
either a word, user mention, or a hashtag and ε ∈ E represents a
syntactic relation between two nodes.

Definition 2. Seed Query: A seed query is a manually selected
typed dependency query targeted for a certain type of event. For
instance, “hacked account” can be defined as a potential seed query
for an account hijacking event.

Definition 3. Expanded Query: An expanded query is a typed
dependency querywhich is automatically generated by the dynamic
query expansion algorithm based on a set of seed queries and a given
tweet collection D. The expanded query and its seed query can
be two different descriptions of the same subject. More commonly,
an expanded query can be more specific than its seed query. For
instance, “prime minister dmitry medvedev twitter account hack”,
an expanded query from “hacked account”, denotes the message
of an account hijacking event related with Russian Prime Minister
Dmitry Medvedev.

Definition 4. Event Representation: An event e is defined as
(Qe ,date, type ), where Qe is the set of event-related expanded
queries, date denotes when the event happens, and type refers to
the category of the cyber-attack event (i.e., DDoS, account hijacking,
or data breach).

HereQe is a defined as a set because, in general, a cyber-attack event
can be presented and retrieved by multiple query templates. For
instance, among online discussion and report about event “Fashola’s
account, website hacked”, the query template most used are “fashola
twitter account hack”, “fashola n78m website twitter account hack”
and “hack account”.

Given the above definitions, the major tasks underlying the
cyber-attack event detection problem are defined as follows:

Task 1: Target Domain Generation. Given a tweet subcollec-
tionD, target domain generation is the task of identifying the set
of target related tweets D+. D+ contains critical domain relevant
information based on which the expanded queries can be mined.

Task 2: Expanded Query Extraction. Given target domain
D+, the task of expanded query extraction is to generate a set of
expanded queries Q = {q1, . . . ,qn } which represents the relevant
concepts delivered byD+. Thus set Q can be used to retrieve event
related information from other collection sets.

Task 3: Dynamic Typed Query Expansion. Given a small set
of seed queries Q0 and a twitter collectionD, the task of dynamic
typed query expansion is to iteratively expand Dk

+ and Qk until
all the target related messages are included.

3 METHODOLOGY
In traditional information extraction (IE), a large corpus of text must
first be annotated to train extractors for event triggers, defined as
main keywords indicating an event occurrence [8]. However, in
our scenario using online social media, a manually annotated label
set is impractical due to the huge volume of online media and the
generally noisy characteristics of social media text. In this section,
we discuss in detail the key components of our system, illustrated
in Fig. 1, to automatically mine cybersecurity related queries over
which the event tracking is performed.

3.1 Target Domain Generation
In this subsection, we describe our target domain generationwherein
crowdsourced social indicators (tweets) of cyber-attack events are
retrieved. Given a query and a collection of tweets D, the typical
way to retrieve query-related documentation is based on a bag of
words model [30] which comes with its attendant disadvantages.
Consider the following two tweets: “have Riseup servers been com-
promised or data leaked?” and “@O2 You completely screwed
me over! My phones back on, still leaking data and YOU are so
UNHELPFUL #CancellingContract #Bye”. Though the important
indicator “data leak” for a data breach attack is mentioned in both
tweets, the second tweet is complaining about a phone carrier and
would be considered noise for the cybersecurity domain. To address
this problem, syntactically bound information and semantic simi-
larity constraints are jointly considered in our proposed method.

More specifically, each tweet in D is first converted into its
dependency tree form. Thus for a given seed query q, the target
domain D+ ⊆ D can be generated by collecting all tweets which
are both syntactically and semantically similar to the seed query
q. Mathematically, given the two dependency trees q and d ∈ D, a
convolution tree kernel [9] is adopted to measure the similarity by
computing all the common paths between two trees:

K(q,d ) =
∑
u ∈q
v ∈d

(
1 +H (u,v )

)
1R>0

(
H (u,v )

)
(1)

where v and u are nodes from two trees q and d respectively, R>0
represents the set of positive real numbers, 1(·) is the indicator
function, andH (v,u) counts the number of common paths between
the two trees which peak at v and u, which can be calculated by
an efficient algorithm proposed by Kate et al. [9], as described in
Algorithm 1.

In Algorithm 1, λ ∈ (0, 1] (set to 0.5) is a parameter used to
down-weight the contribution of long paths, κ (u,v ) is the number
of common paths between the two trees which originate from u
and v , and can be recursively defined as:

κ (u,v ) =
∑

µ ∈C (u )
η∈C (v )

(1 + κ (µ,η))1µ�η (u,v ) , (2)



Figure 1: A schematic overview of the cybersecurity event detection system.

Algorithm 1: Compute all common paths.
Input: u ∈ q, v ∈ d
Output: H (u, v )

1 Set r = κ (u, v );
2 Set Cu = children (u );
3 Set Cv = children (v );
// consider every pair of common child nodes

4 for ci , c j ∈ Cu, i , j do
5 for cm, cn ∈ Cv ,m , n do
6 if ci � cm and c j � cn then

// compute all common paths from children

7 x = κ (ci , cm );
8 y = κ (c j , cn );
9 r = r +

√
λ + λx + λy + λxy // increment

10 H (u, v ) = r ;

where C (·) denotes the set of children node. This reinforces the
common paths which are linguistically meaningful thereby reduc-
ing the noise introduced by coincidentally matched word chains.
In addition the occurrence of long-range dependencies between
words, for example “Ashley Madison”→ “breached” as shown in
Fig. 2, which may decrease the kernel performance when consider-
ing a fixed-window, are avoided because functionally related words
are always directly linked in a dependency tree.

Figure 2: A dependency tree diagram of a cyber-attack re-
lated tweet illustrating short-range (local) and long-range
word-word dependencies.

A key novelty of our convolution tree kernel is the use of a word
embedding approach (instead of exact string matching) to compare
the similarity between two words. In both (line 6) Algorithm 1
and Equation 2, we use the similarity operator � to denote the
comparison of word representations in vector space. This allows
words that occur in similar contexts (that have similar embeddings)
to be semantically compared (asmeasured by cosine similarity). This
in turn helps improve recall & precision of target domain generation,
by allowing the kernel to explore longer paths for example when
comparing “data”←“leak” with “data”←“breach” but reject paths
such as when comparing “website”←“hack” with “life”←“hack”.

3.2 Dynamic Typed Query Expansion
In this subsection, we propose a way to dynamically mine an ex-
panded query given a small collection of seed queries, as shown in
Table 1. By providing a small set of seed queries (unigrams), Zhao et
al. [37] proposed a dynamic query expansion (DQE) method which
is able to iteratively expand the seed query set from a currently
selected target tweet subspace until convergence. Looking beyond
the simple unigram-based expansion, we propose a dynamic typed
query expansion method that uses dependency-based tree struc-
tures for expansion. Our choice of cyber-attack categories is based
on two assumptions: first, these capture over 80% of the yearly,
cyber-attack occurrences 1 and second, that these categories have
a direct impact on users, and thus crowdsourcing and social media
have the potential to capture them. The detection of other attacks
such as insider attacks or network intrusion still rely on traditional
network-based approach. Nevertheless, even though the types of
attacks focused by our paper can be viewed as “user-centric attacks”
our approach (described below) can be extended to other categories.

Let us denote Qk , Dk
+ as the expanded query set and target

domain at the kth iteration. At the start of the iteration, Q0 is ini-
tialized with a small set of domain-relevant seed queries, as shown
in Table 1. WithD and Q0, thenD0

+, the target domain (at iteration
0) tweets are retrieved using the kernel similarity function described

1http://www.hackmageddon.com/category/security/cyber-attacks-statistics/
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Table 1: Seed queries for cyber-attack events.

Category Seed Query

Data breach data leak, security breach, information
stolen, password stolen, hacker stole

DDoS DDoS attack, slow internet, network infil-
trated, malicious activity, vulnerability ex-
ploit, phishing attack

Account Hijacking unauthorized access, stolen identity, hacked
account

in Equation 1. At the kth iteration, given the last expanded query
set Qk−1 and last generated target domainDk−1

+ , our approach first
prepares candidate expanded queries for each matched qi ∈ Qk−1

and d ∈ Dk−1
+ :

q̂ki = subtree
(
argmax
v ∈d

(
∑
u ∈qi

H (v,u))
)
, (3)

where v and u are term nodes in tweet d and qi respectively, and
subgraph(·) is an operator to extract the subtree structure from
entire tree with v as root. Thus the candidate query expansions
are collected based on the relevant document and query space,
that is Dk−1

+ and Qk−1. To identify the best (candidates) expanded
queries, query terms are then ranked based on the Kullback-Leibler
divergence [18] between the target domain Dk−1

+ and the whole
tweet collection D:

KL( f ,Dk−1
+ |D) = log

Pr( f |Dk−1
+ )

Pr( f |D)
Pr( f |Dk−1

+ ), (4)

where KL( f ,Dk−1
+ |D) denotes the Kullback-Leibler divergence, f

is a term in q̂ki , Pr( f |D
k−1
+ ) and Pr( f |D) is the probability of term

f appearing inDk−1
+ andD, respectively. Using the KL divergence

to rank query terms we are able to assign scores to terms that best
discriminate relevant and non-relevant expansions. For example
query terms such “account” and “twitter” both appear frequently in
the candidate expansions but they have little informative value as
they will have a similar (random) distribution in any subset of the
twitter collection, whereas terms such as “hacked” will have com-
paratively higher probability of occurrence in the relevant subspace.
These high ranked candidates will then act as the expanded queries
set to run the next iteration until the algorithm converges.detailed
dynamic typed query expansion algorithm is shown in Algorithm 2.

3.3 Event Extraction
Given an expanded query set Q, we extract Qs | qi ⊈ qj | qi ,qj ∈
Qs . For example, if the surface string representations of a set of
expanded queries Q is (“data breach”, “data leak”, “ashley madison”,
“ashleymadison data breach”) thenQs will be (“ashleymadison data
breach”). We then cluster the query expansions in Qs using affinity
propagation [7] and also extract exemplars qe of each query set Qe
that are representative of clusters, where each member query is
represented by a vector q̃ calculated from the word embedding ũ
of the lemma of each query term u ∈ q as:

q̃ =
∑
u ∈q

ũ . (5)

Algorithm 2: Dynamic Typed Query Expansion Algorithm.
Input: Seed Query Set Q0, Twitter sub-collection D
Output: Expanded Query Set Q

1 Set D0
+ =match (Q0, D), k = 0

2 repeat
3 k = k + 1
4 for qi ∈ Qk−1, d ∈ Dk−1

+ do
5 q̂ki = subtree (argmax

v∈d

∑
u∈qi

CPP (v, u )) // new candidate

6 for f ∈ q̂ki do
7 Pr(f |Dk−1

+ ) =
t f (f )
|Dk−1+ |

8 Pr(f |D) =
t f (f )
|D|

9 w (f ) = KL(f , Dk−1
+ |D) // feature score

10 w (q̂ki ) =
∑
f ∈q̂ki

w (f ) // query score

11 Qk = topN (w ( Q̂k )), Q̂k = {q̂k1 , . . . , q̂
k
|Q̂k |
}

12 Dk
+ =match (Qk , D) // filter new target subspace

13 until
k⋃
i=0
Qi −

k−1⋃
i=0
Qi , ∅ // DQE iteration;

14 Q = Qk

Each exemplar query qe is then annotated to a cyber-attack type.
For this purpose, we first compute the cosine similarity between
an exemplar query expansion qe and seed query qj ∈ Q (0) as:

sim(qe ,qj ) =
q̃e · q̃j

| |q̃e | | · | |q̃j | |
. (6)

The qj ∈ Q
(0) which has the highest similarity value with qe

determines the event type to which Qe belongs to. For the complete
event representation (Qe ,date, type ) date information is extracted
based on the time interval chosen for DQE; for example in our
experiments we run DQE on a daily aggregated collection of tweets.
In this way we extract the final set of event tuples.

4 EVALUATION
4.1 Evaluation Setup

4.1.1 Dataset and Gold Standard Report. We evaluate the pro-
posed method on a large stream of tweets from GNIP’s decahose
(10% sample) collected fromAugust 2014 through October 2016. The
total raw volume of our Twitter dataset across these 27 months is
5,146,666,178 (after removing all retweets and non-English tweets).
Then, from this raw volume we create two subset collections:
• Fixed Keyword Filtered Tweets: We filtered 79,501,789
tweets that contain at least one matching term from a list of
cyber-attack related keywords. These are top 1000 keywords
(ranked by TFIDF) extracted from description texts of events
in our gold standard report (see below).
• Normalized Tweet Texts:We extract and normalize tweet
texts (after removing accents, user mentions and urls) to
produce a collection of 3,267,567,087 unique texts to train a
200 dimensional word embedding via Gensim’s word2vec
software [25].

Note that the experimental results for the performance of our event
detection approach are done using the entire raw volume of over



Figure 3: Streamgraph showing normalized volume of tweets (August 2014 through August 2015) tagged with data breach (red),
DDoS activity (grey) and account hijacking (blue) types of cyber-security events.

Figure 4: Streamgraph showing normalized volume of tweets (September 2015 through October 2016) tagged with data breach
(red), DDoS activity (grey) and account hijacking (blue) types of cyber-security events.

5 billion tweets. The total volume of tweets filtered from query
expansion algorithm is 1,093,716 over the entire time period.

To evaluate our methods, we organize a Gold Standard Report
(GSR) on cyber security incidents to serve as a ground truth data-
base. In particular, we focus on high impact events about data
breach, DDoS and account hijacking incidents based on two differ-
ent sources: Hackmageddon2 and PrivacyRights3. In both sources,
each event is characterized by an event type, date (when the event
was publicly reported), victim organization(s), and a short descrip-
tion.
• Hackmageddon is an independently maintained website
that collects public reports of cybersecurity incidents. Be-
tween January 2014 and December 2016, we extract 295
account hijacking events and 268 DDoS events. For account
hijacking, since we are using social media data, we mainly
focus on hijacking attacks on social media accounts (Twit-
ter, Instagram, Facebook) by cyber crimes. After filtering

2http://hackmageddon.com
3https://www.privacyrights.org/data-breaches

US-based events and matching the time range of our Twitter
data, we obtain 55 account hijacking events and 80 DDoS
events to include in the GSR.
• PrivacyRights is a highly reputable repository for data
breach incident reports. Between January 2014 and Decem-
ber 2016, we extract 1064 reported data breach events. To
enhance the accuracy of GSR, we choose events reported by
four large, well-known sources — “Media”, “KrebsOnSecu-
rity”, “California Attorney General”, and “Security Breach
Letter”. Then, we filter out data breaches involving non-
cyber reasons (e.g., physical theft) and focus on the HACK
category. After removing events with an unknown size of
data loss, and matching the time range with our data, we
have 85 data breach events for inclusion in the GSR.

4.1.2 Baselines and Comparison Methods. We use two Twitter-
based baselines to independently evaluate the performance of our
target domain and cyber-attack detection methods:

(1) Target Domain Generation using Expectation Regularization
(baseline 1) [27]: This baseline is trained based on a small

http://hackmageddon.com
https://www.privacyrights.org/data-breaches


Table 2: A sample of negative instances for cyber-attack events used in the evaluation of target domain generation methods.

Event Entity Date Sample Tweet

white house 2014-08-08 Toddler causes perimeter breach at White House
green zone 2016-04-30 Anti-Government Protesters Breach Baghdad’s Green Zone

avijit roy 2015-02-27 American-Bangladeshi blogger Avijit Roy hacked to death by Islamist extremists
jessica jones 2016-01-13 NBC thinks it’s hacked Netflix’s ratings, says ’Jessica Jones’ bests ’Master of None’

arbor networks 2015-03-25 Arbor Networks, Cisco partner on DDoS protection
zenedge 2016-07-30 ZENEDGE Debuts Always-On DDoS Protection #Bitcoin

Table 3: Contingency table used to assess cyber-attack related tweet detection results.

Method Data Breach DDoS Account Hijacking

TP FP FN TN TP FP FN TN TP FP FN TN

Typed DQE 1110 389 528 1085 516 129 93 30 2028 1 2976 200
Baseline 1 [27] 1526 1391 112 83 295 113 314 46 2182 29 2322 172

set of seed events for each type of attack. For training, we
randomly selected 10 ground-truth events for each of the
three attack types (from our GSR). Additionally, keeping
the similar proportions of per attack-type events, in the test
phase we also included several negative sample events (as
shown in Table 2) from manual search.
Following the dataset preparation process described in [27],
we retained only those event-related tweets that contained
keywords - “hacked” (for account hijacking events), “breach”
(data breach events), and “ddos” (DDoS events). Following
this step, the feature set was generated by collecting a win-
dow of contextual words and POS tags surrounding the seed
event keyword, where this window size was set to 4 in our
evaluation, the target expectation was set to 0.55, l2 regular-
ization term to 100, and expectation regularization term λU

set to 10 times the number of labeled samples. In total, we
collected 8943 and 8585 tweet samples for training and test-
ing, respectively. Further, we were able to extract 8969, 6178
and 10760 features from data breach, DDoS, and account
hijacking event related tweets, respectively.

(2) Cyber-attack Event Detection using Bursty Keywords (baseline
2) [11]: This baseline method identifies time periods in which
a target event is uncharacteristically frequent or bursty on
a set of static keywords. An event is extracted if the size
of this set of bursty keywords is larger than a threshold Tb .
In this experiment, we use the 79.5 million Fixed Keyword
Filtered Tweets and the 1000 static keywords to apply the
baseline method. We set the threshold Tb based on small
scale empirical tests on a few months of data, and manually
examine the detected events. We set Tb =36 which returns
a better event/noise ratio. We apply this threshold on all
the data and detects 81 events from August 2014 through
October 2016. Each detected event is characterized by a date
and a set of bursty keywords.

4.1.3 Matching Detected Events with GSR. Given a detected
event presented by e = (Qe ,date, type ), we developed a semi-
automatic method to detect if e is matched with any event in the
GSR:

(1) For named entity in e , we check if it matches any event
description in GSR and obtain a matched collection from
GSR, sayME;

(2) Further filterME by matching the event date between date
in e andME, with a time window as 3 (one day before date ,
and one day after date), and obtain a new filtered event set,
say FME;

(3) Compare the event type between e and event in FME; if
the event type also matches, then event e is consider as a
matched event.

However considering that the detected events are mined from
the Twitter environment which may not use formal keywords to
describe the event. We also manually double check the event e
if it fails step 1. Detected events by the baseline method use the
same approach to match against GSR. The only adjustment is to
match the bursty keywords of the detected events instead of named
entities.

4.2 Measuring Performance

Target Domain Generation. In terms of precision and recall
(see Table 4), our approach achieves a 70% accuracy in extracting
target domain tweets, outperforming the comparison to baseline
1 [27] in two categories, viz. data breach and DDoS. In case of
account hijacking our accuracy is only slightly less due to our
lower recall, because TypedDQE will reject tweets by way of down-
ranking expansion candidates that are not specific enough (for
example if they contain only one keyword such as “hacked”) and
are below a certain support threshold. The use of kernel similarity
(as opposed to fixed context window) provides higher precision,
seen clearly from Table 3 where our approach detected only 1 tweet
incorrectly as account hijacking-related in comparison to 29 false
positives by the baseline. Also worth noting is the high specificity
(true negative rate) of 71% as compared to baseline’s 16%.

Cyber-attack Event Detection. Precision and recall over dif-
ferent types of cyber-attack events are summarized in Table 4 using
a second baseline [11]. These results show that with only a small
set of seed queries (as shown in Table 1), our approach can obtain



Table 4: Overall evaluation of cyber-attack detection.

Method Data Breach DDoS Account Hijacking

Precision Recall F1 Precision Recall F1 Precision Recall F1

Typed DQE 0.74 0.68 0.71 0.80 0.85 0.82 0.99 0.45 0.61
Baseline 1 [27] 0.52 0.93 0.67 0.72 0.48 0.58 0.99 0.48 0.65
Baseline 2 [11] 0.21 0.20 0.20 0.01 0.02 0.01 0.01 0.01 0.01

Table 5: Matching the detected events with the GSR.

Matched with GSR
Data Breach DDoS Account Hijacking

TP FP TP FP TP FP

Yes 22 0 20 0 8 0
No 156 49 29 12 51 31

Figure 5: Query expansions (size is proportional to the
query’s feature score) produced on October 22 2016 for the
DDoS attack on DNS provider Dyn.

around 80% of precision for data breach and DDoS events. This
means our approach is able to handle the noisy Twitter environ-
ment and perform cyber-attack event detection accurately. The
precision for account hijacking is not as high (66%). On manual
analysis (using online search) we identified several events detected
by our system even though they were not covered by the GSR.
We show this disparity in Table 5 where we can notice that it is
highest for account hijacking type of events (as social media tends
to provide greater coverage to celebrity and other individual cases
of hacked accounts). Data breach events have a higher recall (75%).
The relatively low recall for account hijacking and DDoS is explain-
able. Both DDoS and account hijacking events have a rather short
life cycle from occurrence to being addressed. Thus their signal in
social media is relatively weaker. For instance, DDoS events often
result in several minutes to a few hours of slow Internet access,
and thus may end even before people realize it. This intuition is
validated in the baseline performance. The extremely low precision
and recall shows that relying on burstiness is difficult to capture
such events, possibly due to their weak signals over noise.

4.3 Case Studies
We comprehensively show in Fig. 3 and Fig. 4, the wide range of
events that our system is able to detect. Notice the clear bursts
in Twitter activity that our query expansion algorithm is able to
detect. Through the following case studies we highlight some of
the interesting cases.

Targeted DDoS Attacks on Dyn. In late November 2014, a
hacker group calling itself “The Guardians Of Peace” hacked their
way into Sony Pictures, leaving the Sony network crippled for days.
We capture 12 separate events of DDoS attacks including four in the

Figure 6: Query expansions (size is proportional to the
query’s feature score) produced from the U.S CentComTwit-
ter account hijacking event.

last week of August 2014, beginning with the first on August 24th.
Further in 2015, more ensuing attacks are captured, one highlighted
by the data breach of their movie production house (on December
12th) and then a massively crippling targeted DDoS attack on their
PlayStation network in late December 2015. Another noteworthy
case of DDoS attacks in 2016 is the multiple distributed denial-of-
service attack on DNS provider “Dyn” from October 21st through
31st in 2016, that almost caused an worldwide Internet outage. Our
system generates several query expansions, shown in Fig. 5 which
clearly characterizes the nature of these attacks where the hackers
turned a large number of Internet-connected devices around the
world into botnets executing a distributed attack.

Ashley Madison Website Data Breach. In July 2015 a group
calling itself “The Impact Team” stole the user data of Ashley Madi-
son, an adult dating website. The hackers stole all the website’s
customer data and threatened to release personally identifying in-
formation if the site was not immediately shut down. Between 18th
and 20th August, the group leaked more than 25 gigabytes of com-
pany data. The word clouds in Fig. 7 clearly show how our method
iteratively expands from the seed queries to the expanded queries
in the last iteration (iteration 3) capturing rich characteristics of
the breach. After the initial burst as seen in the figure, we also see
a second corresponding burst a month later (on August 19th) when
the user data was released online.

Twitter Account Hijackings. We were also able to detect with
very high date accuracy, several high profile cases of account hi-
jackings of social media accounts of known personalities and gov-
ernment institutions including the Twitter account for U.S. Central
Command which was hacked by ISIS sympathizers on January 12th,
2015. We show in Fig. 6 that our method not only identifies the
victim (“central command twitter account hack”) but also the actor
who perpetrated the hacking (“isis hack twitter account”).

5 RELATEDWORK

Cyber-attack Detection and Characterization. Detecting
and characterizing cyber-attacks is highly challenging due to the



Figure 7: Ashley Madison website data breach. The streamgraph shows the bursty normalized volume of event-related tweets.
Alongwith all the query expansions (size is proportional to the query’s feature score) produced at each iteraton of TypedDQE.

constant-evolving nature of cyber criminals. Recent proposals cover
a large range of different methods, and Table 6 lists representa-
tive works in this space. Earlier work primarily focuses on mining
network traffic data for intrusion detection. Specific techniques
range from classifying malicious network flows [13] to anomaly
detection in graphs to detecting malicious servers and connec-
tions [4, 5, 12, 21]. More recently, researchers seek to move ahead
to predict cyber-attacks before they happen, for early notifica-
tions [14]. For example, Liu et al. leverage various network data as-
sociated to an organization to look for indicators of attacks [16, 17].
By extracting signals from mis-configured DNS and BGP networks
as well as spam and phishing activities, they build classifiers to
predict if an organization is (or will be) under attack. Similarly,
Soska et al. apply supervised classifiers to network traffic data to
detect vulnerable websites, and predict their chances of turning
malicious in the future [32].

In recent years, online media such as blogs and social networks
have become another promising data source of security intelli-
gence [19, 36]. Most existing work focuses on technology blogs
and tweets from security professionals to extract useful informa-
tion [34]. For example, Liao et al. builds text mining tools to extract
key attack identifiers (IP, MD5 hashes) from security tech blogs [15].
Sabottke et al. leverage Twitter data to estimate the level of interest
in existing CVE vulnerabilities, and predict their chance of being
exploited in practice [28]. Our work differs from existing literature
since we focus on crowdsourced data from the much broader user
population who are likely the victims of security attacks. The most
related work to ours is [27] which uses weakly supervised learning
to detect security related tweets. However, this technique is unable
to capture the dynamically evolving nature of attacks and is unable
to encode characteristics of detected events.

Event Extraction and Forecasting on Twitter. Another body
of related work focuses on Twitter to extract various events such as
trending news [1, 26], natural disasters [29], criminal incidents [35]
and population migrations [23]. Common event extraction methods
include simple keyword matching and clustering, and topic mod-
eling with temporal and geolocation constrains [3, 33, 38]. Event
forecasting, on the other hand, aims to predict future evens based
on early signals extracted from tweets. Example applications in-
clude detecting activity planning [2] and forecasting future events

such as civil unrest [24] and upcoming threats to airports [10]. In
our work, we follow a similar intuition to detect signals for major
security attacks. The key novelty in our approach, different from
these works, is the need for a typed query expansion strategy that
provides both focused results and aids in extracting key indicators
underlying the cyber-attack.

6 CONCLUSION
We have demonstrated a weakly supervised approach with no train-
ing phase requirement to dynamically extract and encode cyber-
attacks reported and discussed in social media. We have motivated
the need for a careful structured query expansion strategy, and
how the use of dependency parse trees and word embeddings sup-
ports context-rich retrieval. Our retrieval algorithm can be easily
extended to other languages (by training additional embedding
models) and different data sources of real-time, text streams such
as users’ status updates and blog posts commonly found in several
online social networks other than Twitter. We have performed a
comprehensive evaluation of our approach achieving over 70% ac-
curacy in retrieving cyber-attacks related content from social media
streams, and 80% precision in successfully detecting cyber security
related events, outperforming the two considered baselines. Given
the widespread prevalence of cyber-attacks, tools such as presented
here are crucial to providing situational awareness on an ongoing
basis. Future work is aimed at broadening the class of attacks that
the system is geared to as well as at modeling sequential depen-
dencies (from occurrence to reporting) of cyber-attacks. This will
aid in capturing characteristics such as the increased prevalence of
attacks on specific institutions or countries during particular time
periods.
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