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ABSTRACT

Today’s WiFi access points (APs) are ubiquitous, and pro-
vide critical connectivity for a wide range of mobile network-
ing devices. Many management tasks, e.g. optimizing AP
placement and detecting rogue APs, require a user to effi-
ciently determine the location of wireless APs. Unlike prior
localization techniques that require either specialized equip-
ment or extensive outdoor measurements, we propose a way
to locate APs in real-time using commodity smartphones.
Our insight is that by rotating a wireless receiver (smart-
phone) around a signal-blocking obstacle (the user’s body),
we can effectively emulate the sensitivity and functionality
of a directional antenna. Our measurements show that we
can detect these signal strength artifacts on multiple smart-
phone platforms for a variety of outdoor environments. We
develop a model for detecting signal dips caused by blocking
obstacles, and use it to produce a directional analysis tech-
nique that accurately predicts the direction of the AP, along
with an associated confidence value. The result is Borealis, a
system that provides accurate directional guidance and leads
users to a desired AP after a few measurements. Detailed
measurements show that Borealis is significantly more accu-
rate than other real-time localization systems, and is nearly
as accurate as offline approaches using extensive wireless
measurements.
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1. INTRODUCTION
WiFi networks today are ubiquitous in our daily lives.

WiFi access points (APs) extend the reach of wired networks
in indoor environments such as homes and offices, and en-
able mobile connectivity in outdoor environments such as
sports stadiums, parks, schools and shopping centers [1, 2].
Even cellular service providers are relying on outdoor WiFi
APs to offload their 3G traffic [2, 3]. As Internet users be-
come reliant on these APs to connect their smartphones,
tablets and laptops, the availability and performance of to-
morrow’s networks will depend on well tuned and managed
access points.

A critical part of managing access points is the ability
to locate individual access points based on their signal [16,
19, 23]. Doing so allows network administrators to identify
APs causing excessive interference to others, or unautho-
rized APs that may provide easy entry for malicious attack-
ers [22]. For individual users, it allows them to locate and
get closer to neighborhood WiFi hotspots, build war-driving
databases, or pinpoint neighboring APs so they can better
position their own basestations.

Unfortunately, much of this is not possible today, because
current techniques to locate outdoor WiFi access points re-
quire either extensive wardriving measurements, followed by
significant offline computation [11], or complex hardware
components such as steerable directional phased array an-
tennas [28]. For the wardriving scenario, locating each AP
requires measurements from a large number (35+) of loca-
tions, making the process extremely time and energy inten-
sive. For the directional antenna solution, the specialized
hardware components cost several thousand dollars each,
which clearly limits their availability to only a small portion
of system administrators for large enterprises.

In this work, we ask the question: “is there a cost- and
time-efficient alternative to perform accurate outdoor loca-
tion of WiFi access points?” A potential solution using
common-off-the-shelf (COTS) hardware would break access
point location out of a small niche market of enterprise ad-
ministrators, and make it available to home users and small
businesses managing their own local hotspots.

Our solution is derived from a key insight: “by rotating a
standard wireless receiver around a blocking object, we can
effectively emulate the sensitivity and functionality of a di-
rectional antenna.” We exploit the property that the signal
strength observed by a wireless receiver drops most signifi-
cantly when there is a large obstacle directly between it and
the transmitter. Such a drop in signal strength is strongest
when the receiver is directly adjacent to the obstacle, and



should be observable as long as the obstacle is large enough
to block a significant portion of the reception angle. There-
fore, by “rotating” the receiver’s position with respect to the
obstacle (and the signal “void” it produces), and observing
the received signal strength, we can determine the approxi-
mate direction of the transmitter. We refer to this process
as directional analysis.

While this is a general observation potentially applicable
to a variety of wireless transmissions on different frequen-
cies and hardware, we focus our attention in this paper on
a single use case: outdoor location of WiFi access points us-
ing smartphones. Applying our insight, we hypothesize that
a user can accurately locate WiFi APs using common-off-
the-shelf smartphones as receivers, and her own body as the
blocking obstacle. To perform a directional analysis opera-
tion, she slowly rotates her body around 360 degrees, while
keeping the smartphone in front of her and performing pe-
riodic received signal strength (RSS) measurements. The
observed RSS should be at its lowest point when the user’s
body is directly between the smartphone and the wireless
AP. By walking towards the predicted direction of the AP,
and periodically repeating the directional analysis, a user
should be able to zone in and locate any specific AP.

To validate our hypothesis, we first perform detailed ex-
periments to see if such dips in signal strength can be ob-
served using today’s smartphones and standard WiFi access
points. We run tests on several different environments on
the UC Santa Barbara campus, target both 802.11b/g and
802.11n (MIMO) APs, and use three different smartphone
platforms, Android, WindowsMobile, and Apple iPhone4.
Using a large number of real measurements, we do in fact
observe the expected dip in signal strength when the tester’s
body blocks the smartphone from the access point. We con-
sistently observe the artifact across both platforms, environ-
ments with different levels of obstructions, and for users of
different heights and weights.

Borealis. These measurement results lead us to develop
Borealis, a system for locating outdoor WiFi access points
using software on commodity smartphones. Borealis users
can perform robust directional analysis by turning their bod-
ies on a 360◦ axis, and use this technique to locate a trans-
mitting access point. We address several challenges in the
process of building Borealis, most significant of which is that
errors in directional analysis are impacted by environmental
conditions, and particularly exacerbated by multipath prop-
agation around areas with multiple buildings. Our solution
is to build a model that predicts the impact of blocking ob-
stacles on signal strength at the receiver, use it to identify
large blocking effects, and in doing so, produce more accu-
rate predictions of the AP’s direction. Combined with prior
techniques on direction-guided user navigation [10, 14, 15],
we produce a system that efficiently guides users to an AP.
In scenarios where the AP is housed indoors, our system
guides the user to an outdoor location closest to the AP.

We implement and deploy Borealis as a user application
and a set of kernel modifications on the Android platform.
We modify the WiFi driver to focus scans on specific chan-
nels, thus allowing more frequent RSS measurements while
reducing energy usage. Our user application assists the user
in directional analysis by logging each RSS measurement
along with data from the orientation sensor, and using it to
compute the most likely direction of the access point along

with a prediction confidence. The user can repeat the pro-
cess with success until she is within 2 meters of the AP.

We perform detailed experimental evaluation on Motorola
Droid and HTC G1 phones. Our results show that Bore-
alis produces significantly more accurate AP direction values
than GUIDE [10], the recent system using triangle gradients
to compute AP direction. We also find that running Bore-
alis in real-time produces similar accuracy compared to an
offline version using learning techniques on a large number
of RSS measurements. Finally, our results show that using
our direction predictions, Borealis leads the user on a path
that reasonably approximates the shortest path to the AP.

Our work shows that with small software modifications,
today’s smartphones can effectively replace directional an-
tennas to locate outdoor WiFi access points. Borealis is the
first example of a potential class of systems that approx-
imate directional antenna systems using rotation around
signal-blocking obstacles, and its underlying principle can
potentially be applied to build location systems for other
wireless transmissions.

2. PRELIMINARIES
In this section, we briefly describe the problem scenario

and assumptions. We then summarize existing work that is
most relevant to our target scenario.

Our focus is to accurately locate outdoor WiFi AP using
common off-the-shelf smartphones as receivers. This func-
tionality is a critical part of managing WiFi access networks
for both small business and home users. The problem sce-
nario is simple – a user, holding a smartphone, seeks to find
the physical location of a WiFi AP from its BSSID. Note
that our AP location problem is different from the general
wireless localization problem [4, 6, 12]. The user seeks to
locate a transmitting AP rather than determining her own
location.

2.1 Related Work
In general, a receiver locates a transmitter by examining

received signal strength (RSS), time of arrival (TOA) [7],
time difference of arrival (TDOA) [13], or angle of arrival
(AOA) [20]. The latter three methods all require simulta-
neous measurements at multiple receivers or antenna array.
They are commonly used in cellular networks where neigh-
boring basestations collaborate to locate a mobile device.
They are, however, not feasible in our target scenario. Thus
we focus our discussion on the RSS based method.

We categorize the RSS based solutions into three groups.

Model-based. Solutions in this category consider abso-
lute values of RSS. Using RSS values measured at one [26]
or multiple [8] locations, existing designs seek to derive the
physical distance between the tester and the transmitter or
the exact transmitter location, based on a radio propagation
model. This solution, however, is fundamentally limited by
the inaccuracy of propagation models for practical environ-
ments [12].

Gradient-based. This type of solution compares the RSS
values obtained from different locations. Based on the as-
sumption that a location closer to the AP will have a higher
RSS value, existing designs estimate the AP direction by
computing the gradient of the RSS value across different lo-
cations. This is done either online [10, 29] using a small set of
local measurements, or offline [11] by integrating the results



(a) Facing AP. (b) Back facing AP. (c) The user rotating in place.

Figure 1: Illustrations of users facing the AP, with back to the AP, and rotating while holding a smartphone.

of a large number of measurements. The problem with this
line of solution is its idealized assumption that RSS values
increase as the receiver moves closer to the transmitter. Our
own measurements show that this assumption often breaks
in practice, leading to large errors.

Directional Antennas. The use of directional antenna,
either at transmitter [17, 27] or receiver [14, 15, 18, 28], can
significantly boost localization performance. For example,
by rotating the beam of its antenna, a receiver can pinpoint
the direction of the AP as the direction that provides the
highest receive signal strength [28]. The drawback is that it
requires specialized hardware.

Among the above solutions, the directional antenna based
solution achieves most of our system requirements: it is
accurate, uses a single radio, and operates online with a
small measurement overhead. However, directional antennas
are prohibitively expensive for home users and not portable
enough for personal use.

3. THE BLOCKING OBSTACLE EFFECT
The key insight that enables our approach to locating ac-

cess points is surprisingly simple. We hypothesize that when
placed next to a large obstacle, the signal strength perceived
by a wireless receiver will be highly dependent on where the
obstacle is relative to the position of the receiver. The closer
the obstacle is to blocking line-of-sight between the AP and
the receiver, the more of the signal is blocked, and the weaker
the signal strength seen by the receiver.

We apply this hypothesis to our context of smartphone
based AP location. The body of a user holding a smartphone
will block a portion of the incoming WiFi signal. The closer
the user is to being on the straight line between the smart-
phone and the AP, the weaker the signal perceived by the
phone. This blocking effect of the human body has been ob-
served on a variety of frequencies and radio hardware [9, 24,
30], even in indoor environments [4]. Consider Figure 1(a)-
(b). When her back is towards the AP, the user’s body
becomes an obstacle and blocks the signals from reaching
the smartphone. When facing the AP, the body is no longer
an obstacle. Therefore, we expect that as a user rotates her-
self in place, as in Figure 1(c), the phone’s received signal
strength will display an interesting artifact: a peak when she
faces the AP and a dip when her back faces the AP. Thus
by measuring signal strength at different rotational angles,
a user can gain a hint of which direction points towards the
AP.

In this section, we verify our hypothesis using detailed
smartphone experiments. Our experiments seek to study
the impact the body as an obstacle has on signal strength

as the user rotates herself. We seek to understand the factors
that cause this artifact, and the impact on this artifact by
factors such as propagation environment, phone hardware
and WiFi standards.

3.1 Smartphone Experiments
Our experiments use four popular smartphones: Motorola

Droid, HTC Dream/G1, Apple iPhone 4, and LG Fathom
(WindowsMobile 6.5). The first two phones support 802.11b/g
and the last two support 802.11b/g/n. We program each
smartphone to poll its RSS reports, and record the received
WiFi signal strength from a given AP. Using its built-in com-
pass, each phone records its relative orientation1 as the user
rotates in a clockwise direction. To diminish the impact
of fast fading, we smooth the RSS values using a moving
average window of 20◦ along the measured angle.

Our experiments will answer five key questions:
a) Is there a clear observable artifact?
b) What is the source of this artifact?
c) Is it a function of the propagation environment?
d) Is it sensitive to different phone hardware or AP con-

figurations, i.e. 802.11b/g vs. 802.11n?
e) Is it sensitive to the height/weight of users, or how they

position the phone with respect to their body?

Experiment 1: Signal Patterns during Rotation. Our
first experiments examine the signal strength artifacts dur-
ing user rotation. At each test location, a user holds a smart-
phone in the hand and rotates her body by 360◦ at a speed of
6◦ per second. Each experiment records the instantaneous
RSS values and the phone/user orientations. We set up the
AP in an open space area where a direct line-of-sight path
exists between the AP and the phone. In the rest of the pa-
per, we refer to this environment as Simple LOS. This basic
configuration allows us to study the impact of body position
with minimum impact from other factors.

The results confirm our hypothesis. Figure 2(a) and (b)
plot instances of the signal strength distribution as a func-
tion of the user orientation, for both Droid and G1 phones.
For easy illustration, we mark the direction of user facing
the AP as 60◦ and the direction with back to the AP as
240◦. The results, marked as “w/ human shield”, show a
clear dip pattern. When the user has her back facing (BF)
the AP, the received signal strength is about 10-15dB lower
than that when the user faces the AP. We observed similar
patterns as we varied the distance between the phone and
the AP. We observed up to 18dB difference in RSS values
even when the user was only ≈2 meters away from the AP.
We also varied the height of the AP between 2 and 18 me-

1Relative to the initial direction the user was facing.
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(f) Windows Mobile, Simple LOS

Figure 2: Observed signal strength profiles with user rotation. We mark the user direction facing the AP as
60◦, the direction with user’s back to the AP as 240◦ (marked by BF). (a)-(b) When a user holds the phone
with Droid and G1 phones in a simple LOS environment, the signal profile displays a clear low signal artifact.
(c)-(d) The artifact is consistently visible in the complex LOS and NLOS environments. (e)-(f) The artifact
is easily visible using iPhone 4 and Windows Mobile phones with both 802.11b/g and 802.11n APs.

ters, and observed no difference in results. Finally, in each
graph, we mark the angle representing back-facing the AP
with a vertical line (BF), and mark the point of lowest signal
strength with a blue dot.

Experiment 2: Source of the Artifact. Our next
question is to identify whether the signal strength artifacts
are caused by the position of the user’s body, or the orienta-
tion of the phone antenna [25]. First, we repeat Experiment
1 multiple times, each time changing the orientation of the
phone antenna, and observe no change in the results. Next,
we repeat the same experiment, but remove the human body
as an obstacle by placing the phone flat on top of a small
chest-high table. We shift the orientation of the phone in
20◦ increments, and measure the signal strength for 30 sec-
onds with the phone in each orientation. The results are
plotted in Figure 2(a) and (b) as “w/o human shield,” and
show that the low-signal artifact is clearly gone. Thus we
conclude that the low signal artifact is mainly caused by
position of the human body, and its impact in blocking the
AP’s signal.

Experiment 3: Dependency on Environments. We
also repeat the above experiments under different propaga-
tion environments. In addition to Simple LOS, we include
an open area with surrounding buildings and moving ob-
jects (Complex LOS), and an environment with multiple
buildings and objects and thus no line-of-sight paths be-
tween the phone and the AP (NLOS). We show illustrations
of these three measurement areas in Figure 3. We perform
multiple measurements at different positions in each envi-
ronment, and plot two sample results for Complex LOS and
NLOS in Figure 2(c) and (d). We see that the low signal

artifact still exists, while the magnitude of the dip may vary
between different positions. This is expected, since reflec-
tions from surrounding objects can create multipath signals
that reduce the impact of the user body blocking signals.

Experiment 4: Impact of Phone and AP Configura-
tion. These experiments measure the low signal artifact
under different phone hardware and AP configurations. Fig-
ure 2(e) and (f) show the standard experiment results using
both iPhone4 and WindowMobile phones in a Simple LOS
environment. We see that both phones exhibit the same ar-
tifacts for both 802.11b/g and 802.11n APs. The AP hard-
ware results are notable, since it means that even connecting
to 802.11n APs who use multiple antennas, the low signal
artifact still comes across clearly in measurement results.

Experiment 5: Impact of User Posture and Body
Shape. We repeat the above experiments with 6 addi-
tional users, with varying heights and weights, ranging from
5’4”, 100lbs to 6’, 160lbs. Each user holds the phone using
a slightly different posture. The same artifact consistently
appears in all results, thus demonstrating that the low signal
effect is prevalent across users.

3.2 Key Observations
Overall, our experiments lead to two key findings. First,

our experiments confirm that the position of the user’s body
can significantly affect the smartphone’s received WiFi sig-
nal strength. When the user has her back facing the AP, her
body becomes an obstacle and significantly degrades the re-
ceived signal strength.

Second, for each of our result graphs, we use BF (for back
facing AP) to mark the opposite AP direction where the
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Figure 3: Graphical illustration of the three prop-
agation environments used in our experiments, all
located on the UC Santa Barbara campus. For both
Complex LOS and NLOS, the AP was mounted right
below the roof of an office trailer, and there are
many static and moving obstacles nearby, includ-
ing trees, cars, bikers and pedestrians. For NLOS,
the path between the AP and the measured region
is blocked by office trailers.

blocking effect should be at its strongest. We also mark
the point of lowest signal strength with a large blue dot.
It is clear that across all of our experiments with different
phones and different environments, the angle with the low-
est signal strength does not capture the predicted direction
away from the AP. The “error” between the angle showing
the lowest signal and the ideal angle can be as low as near
zero (WindowsMobile, 11n), or as high as ≈ 40◦ (Sample
2, Droid NLOS). Clearly, an accurate AP location system
cannot simply rely on finding the angle with lowest signal
strength, and must use more sophisticated techniques to de-
termine the AP direction.

4. ACCURATE ACCESS POINT LOCATION
Motivated by our findings, we propose Borealis, a new

AP localization system for smartphones that leverages sig-
nal strength artifacts to compute the direction of an AP.
Unlike conventional solutions that either require sophisti-
cated radio hardware (i.e. directional antennas) [28], or ex-
tensive war-driving measurements [11], our solution uses off-
the-shelf smartphones and produces real-time results with a
small number of measurements.

4.1 Borealis Overview and Challenges
The concept behind our design is simple. At a fixed loca-

tion, a user rotates herself and records the signal strength
profile of the target AP. Based on the observed signal arti-
fact, she estimates the direction of the AP from her current
location. She moves towards the AP, occasionally repeating
the measurement step, until she arrives at the AP.

Borealis has two key requirements. First, given the lim-
ited resources on smartphones, Borealis must use minimal
energy and computational resource in its directional anal-
ysis. Second, Borealis must produce results in real-time,
and its directional measurements should be minimized to
conserve user effort. We can meet both of these goals by

designing a system that minimizes computation while pro-
ducing accurate results. The more accurate the result, the
fewer number of direction analysis measurements are nec-
essary, thereby saving both device battery power and user
effort.

Our biggest challenge is how to reliably determine the AP
direction based on the measured signal strength profile. Our
initial experiments in Section 3 show that simply using the
angle with lowest signal strength to estimate AP direction
can generate large estimation errors (as indicated in Fig-
ure 2 by the distance on the x-axis between BF and the dot
representing minimum signal strength). Across roughly 40%
of all our experiments, using minimum RSS to estimate the
AP direction leads to an error between 40◦ and 120◦.

This error comes from two factors. First, as the user ro-
tates, we measure the signal strength of various directions
sequentially, not simultaneously. Thus time dynamics in sig-
nal propagation produces variance in signal strength values
across different directions. Second, the measurement time
duration at each angle is limited, which leads to measure-
ment noise. Extending the per-angle measurement time can
help reduce noise, but also increases user effort, power con-
sumption, and gap between sequential measurements.

4.2 Modeling the Body as a Signal Obstacle
Borealis addresses the significant error introduced by time

dynamics and propagation effects using a model-driven ap-
proach. We first study the smartphone measurement traces
to understand the relationships between signal strength pro-
file, user orientation, and AP direction. We build a model to
capture these relationships and predict the impact of block-
ing obstacles on signal strength. We use this model to de-
velop an accurate AP direction prediction mechanism, along
with a way to estimate the confidence of each estimate.

Our first observation from our experiments is that as the
user rotates, not only does her body block the wireless signal
and reduce its strength, but also that this signal degradation
occurs at a range of angles, not just when the user is facing
away from the AP.

To better understand this phenomenon, we introduce a
simplified object-blocking model. Consider a simple propa-
gation environment without any obstacles blocking the sig-
nal; a line-of-sight (LOS) path is the dominant signal path
between the AP and the phone. We model the human body
and the phone in a diagram in Figure 4(a), where the hu-
man body has width b and the distance between the phone
and the body is p. Next, Figure 4(b) illustrates the signal
propagation condition as the user rotates herself. We see
that when the orientation of the user and phone is within

an angular sector between ~d1 and ~d2, no LOS path will reach
the phone. We refer to this angular sector as the blocking
sector. Because the dominating path is blocked, the signal
strength observed in this sector will be significantly lower
than that of the other orientations.

Modeling the Blocking Sector. Using simple geome-
try, we can further characterize the blocking sector, partic-
ularly its size in degrees.

Theorem 1. When line-of-sight is the dominant propa-
gation path between the AP and the smartphone, the angular
size β of the blocking sector is defined by

β = 180◦ − 2(arctan
2p

b
− arcsin

bp

d
p

4p2 + b2
). (1)
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Figure 4: An abstract model of the human shield effect. (a) A simple model of a user holding a smartphone,
with body width b and phone/body distance p. (b) The signal propagation condition as the user rotates.

When the user orientation is between ~d1 and ~d2, the LOS path will be blocked by the human body. This range
of orientation is referred to as the blocking sector. (c) A geometric representation of the blocking sector.

where p is the distance between the human body and the
phone, b is the body width, and d is the distance between
the AP and the user.

Proof. As shown in Figure 4(c), line l passes the AP
(denoted by A) and the center of human body (denoted
by B). Assume the rightmost point of human body is C
and consider the triangle △ABC. By the sine law, we have

b
2 sin θ

= d
sin γ

, where θ and γ are marked in Figure 4(c). Simi-

larly, we have γ = θ+ α
2
. Given that γ = arctan 2p

b
, we arrive

at α = 2(arctan 2p
b
− arcsin bp

d
√

4p2+b2
). Since β = 180◦ − α,

we prove that Equation (1) holds.

In practice, the distance between the AP and the user is
much longer than the human body width (≈ 0.4m), namely
d >> b, d >> p. Furthermore, when a user holds the smart-
phone in a natural posture, the smartphone is roughly half
of the body width away, namely b ≈ 2p. Then we can re-
duce (1) to

β ≈ 180◦ − 2 arctan
2p

b
= 90◦. (2)

Summary of Findings. The objective of our analysis
is not to model the exact impact of the human shield effect,
but to capture the large-scale trend of the signal strength
profile, and its relationship with the user orientation and
the AP direction. Along these lines, our analysis leads to
two key insights:

• During user rotation, the signal strength degrades heavily
when the user orientation is within a range, defined by the
blocking sector. The angular size of the sector is roughly
90◦ under general configurations.

• We can derive an estimate of the direction to the AP,
by taking the opposite direction of the center angle of the
blocking sector β, as in Figure 4(c).

4.3 Directional Analysis via Blocking Sector
Motivated by the insights from our model, we propose to

estimate AP direction by locating the blocking sector within
the signal strength profile. In essence, we organize the ob-
served signal strength profile into overlapping sectors of size
β, and locate the candidate sector that displays the largest
relative signal degradation. The opposite direction from the
center of the blocking sector is then the AP direction.

We now describe the detailed procedure of our proposed
directional analysis. The input to our analysis is the raw

RSS value (in dBm) corresponding to each measured user
orientation. Here we do not apply any data smoothing, un-
like the results shown in Section 3. We represent the mea-
sured RSS profile during a user rotation by

R = {(RSS(θi), θi)|i ∈ [1, N ]} (3)

where N is the number of measurement points, RSS(θi)
represents the raw RSS reading (dBm) at point i, and θi is
the user orientation at point i (the clockwise angle from the
North orientation).

Organizing Candidate Sectors. We first form candi-
date sectors of width β. This is done by applying a sliding
window of width β on the cyclic version of the signal strength
profile, and shifting the window by ∆ after forming a sec-
tor. The jth sector contains measurement points whose θ
satisfies: (j − 1)∆ ≤ θ < (j − 1)∆ + β. As a result, we
create a total of K = 360/∆ overlapping candidate sectors.
The value of ∆ directly affects the accuracy and computa-
tion overhead. From our experiments, we did not observe
noticeable gain of using ∆ < 20◦. Thus we chose ∆ = 20◦

in this work.

Locating the Blocking Sector. For each candidate sec-
tor Sj , we compute the relative signal degradation by sub-
tracting the average signal strength of the sector from the
average signal strength outside the sector:

Diff(j) =

P

θ/∈Sj
RSS(θ)

N − |Sj |
−

P

θ∈Sj
RSS(θ)

|Sj |
(4)

where |Sj | is the number of measurement points within the
sector Sj and N is the total measurement points in the sig-
nal profile. By considering the signal strength distribution
within and outside the sector, this relative degradation met-
ric helps to mitigate the negative impact of non-uniform
distribution of measurement points within the signal profile.
While (4) may not be an optimal function for identifying the
blocking sector, it works sufficiently well for our purposes.

Using the Diff function, the blocking sector S∗ is then

S∗ = argmax
Sj

Diff(j), (5)

the sector that suffers the heaviest signal strength degrada-
tion. After locating S∗, we mark the opposite direction of
the center orientation of S∗ as the AP direction.

Figure 5(a) demonstrates our proposed direction analysis
in terms of the RSS signal profile, the function Diff, the cen-
ter angle of the detected blocking sector (marked by the red
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Figure 5: Borealis’ directional analysis. (a) Deriving the AP direction based on the blocking sector.(b)
Choosing the blocking sector size. (c) Predicting the confidence of our direction analysis by computing the
cross-correlation between the measured and ideal signal strength profiles.

triangle), and the actual direction opposite to the AP di-
rection (marked by BF). In this example figure, we smooth
the RSS profile using a 20◦ sliding window average to show
the general trend. We see that Borealis obtains an estimate
within 10◦ from the actual direction. Yet if we use the MinR
method, the estimated direction will be 30◦ away from the
ideal result. The gain of our solution comes from the fact
that we examine the signal strength distribution at the sec-
tor level, which not only captures the key effect of body
blocking, but is also robust against low levels of statistical
variance in the measured data.

Impact of β. The above discussion also leads to another
question: How important is the chosen value of β? While
this is difficult to study analytically, we performed experi-
ments to verify the impact of β on the direction estimation.
Figure 5(b) plots the percentage of measurement locations
whose estimation angular error is less than 30◦, as a function
of β, for all three environmental settings in Figure 3. We see
that the value of β that produces the least amount of error
is between [80◦, 100◦] for all three settings. For simplicity,
we use β = 90◦ in subsequent experiments.

4.4 Confidence of Directional Analysis
Borealis’ directional analysis provides another result, by

providing a confidence level associated with each estimate of
AP direction. Since no direction estimate is perfectly accu-
rate, an associated confidence value gives the user additional
useful information. As we show in Section 4.5, Borealis uses
this confidence value of each estimate to control how often
a user needs to repeat the direction estimate. Therefore,
Borealis can bound the impact of directional analysis errors
during user navigation.

We compute the confidence by comparing the signal strength
profile to an idealized profile derived from our abstract model
on body blocking. That is, ideally, the measured signal
strength profile should display a dip pattern, where the
signal strength is significantly lower for a range of angles.
Based on this insight, we build an ideal profile using a square-
waveform-like curve, shown in Figure 5(c). The width of the
dip is β (β = 90◦ in this paper), and the center of the dip
is set to the opposite of the (estimated) AP direction. The
amplitude of the square is Ap for the peak and Ad for the
dip, Ap > Ad.

We use the confidence to capture the similarity between
the measured signal strength profile and the ideal profile.

It can be computed as the cross-correlation coefficient of
the two profiles [21], a widely used similarity metric for
any two waveforms [5]. The correlation coefficient seeks
to capture the similarity between the measured and ideal
dip patterns, assuming both patterns produce the same AP
direction estimation. Hence before computing the correla-
tion, we first align the center of the dip in the ideal pro-
file to the opposite direction of the estimated AP direction,
as shown in Figure 5(c). Next, let T = [t0, ..., tm−1] and
R = [r0, ..., rm−1] denote the vectors of RSS values for the
idealized (and aligned) profile and the measured profile, re-
spectively. The confidence value ρ is:

ρ =
1

m
·

P

i∈[0,m−1](ti − t)(ri − r)

σT · σR

, (6)

where t, r are the mean values of T,R respectively, and
σT, σR are the standard deviations of T,R. The larger ρ
is, the more confident Borealis is about its estimate. It is
easy to prove that the values of Ap and Ad do not affect ρ,
as long as Ap > Ad. Thus we set Ap=1 and Ad=0.

4.5 Direction-Guided User Navigation
While direction analysis provides a good estimate of the

AP’s direction relative to a location, the goal of Borealis
is to allow users to determine the AP’s physical location.
We choose to adopt methodology similar to prior work [10,
14, 15], where a user moves towards the AP and performs
periodic direction estimates to tune its direction. Navigation
ends when she reaches the AP.

We modify prior approaches by leveraging our prediction
confidence results to determine how frequently a user should
update her direction of movement. Doing so less frequently,
i.e. longer distances between measurements, reduces the
number of measurements required. But this means error
from a single measurement will have a greater impact on
the efficiency of the path taken. We dynamically select the
step size based on the confidence value predicted for each
direction estimate. A high confidence implies a reliable esti-
mate and means the user can travel a longer distance before
repeating the estimate. In contrast, a direction estimate
with low confidence means the user is likely in a location
with complex propagation conditions, and should repeat the
estimate after moving a short distance along the predicted
direction. We use detailed experiments to evaluate this in
Section 6.
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Figure 6: Borealis architecture overview.

5. A BOREALIS PROTOTYPE
We implemented a prototype of Borealis on both Motorola

Droid and HTC Dream/G1 phones, running the Android 2.2
Froyo OS. In the application layer, we implemented Borealis’
directional analysis (with confidence prediction) and user
navigation using Java and Android SDK. In the OS layer, we
modified the WiFi driver to perform faster and more efficient
RSS measurements. The architecture of our prototype is
shown in Figure 6.

Application Layer. Our program allows the user to
identify a target AP based on its SSID, and directs the
user to start the rotation. During each rotation, our pro-
gram continues to collect user orientation and RSS values by
polling the compass sensor and WiFi RSS reports. Because
the smartphones report orientation data at a finer granular-
ity than RSS, we pair each RSS reading with an orientation
reading based on their time stamps. Our program then an-
alyzes the measured signal profile, and computes the AP
direction and the confidence value of the current estima-
tion. The direction is then displayed on the phone to guide
the user navigation. During navigation, our program also
determines online whether the next measurement point is
reached, and informs the user accordingly.

OS Layer. While our main development effort lies in the
application layer, in the OS layer we modified the Android
WiFi driver to boost the speed and efficiency of WiFi signal
measurements. Android offers a native “Scan” function to
collect RSS reports of a target AP. However, this operation
scans all 13 WiFi channels sequentially, wasting both time
and energy. To fix this, we modified the WiFi driver to only
scan and report RSS on requested channels. This change
reduces the RSS report time by a factor of 10.

For our current prototype, each user rotation takes 1 minute
to obtain a smooth RSS profile. We are currently working
on understanding the minimum duration that produces an
accurate result. Our preliminary results show that rota-
tion duration of 10 seconds produces similar results to those
of 1 minute durations. In addition, we are also investigat-
ing techniques that would allow us to measure RSS signal
profiles opportunistically using users’ natural movements,
rather than forcing them to perform in-place rotation.

6. EVALUATION
In this section, we evaluate our Borealis prototype using

experiments on five Motorola Droid and HTC G1 phones.
We use a Linksys WRT54GL 802.11b/g router as the WiFi
access point, with a transmit power of 200mW. Our exper-
iments were conducted over multiple days by seven users
with different body shapes and ways of holding phones. Be-

cause G1 and Droid display similar results, we only show
the Droid results for brevity.

We evaluate the impact of radio propagation by experi-
menting in three representative environments, as illustrated
by Figure 3. In Simple LOS, we placed the AP on top of
a shelf 2 meters in height, on a 100m×200m lawn. All the
experiments were on the lawn and away from large build-
ings. In Complex LOS, we placed the AP on top of a trailer
building (5-meter in height) and experimented in the nearby
parking lot surrounded by trailer buildings of similar height.
In these locations, we could still see the AP. For NLOS, we
used the same configuration of Complex LOS but experi-
mented along the hidden walking paths where the AP was
no longer in sight. For each environment, we experimented
with at least 400 locations for each phone. There were ran-
dom human movements throughout our experiments, e.g.
people walking or biking.

To evaluate Borealis, we compare four systems for deriving
AP direction via signal measurements.

• MinR – The baseline algorithm for our proposed direc-
tional analysis. It treats the opposite direction of the
weakest signal as the AP direction.

• Borealis – Our proposed directional analysis.

• Offline Analysis – An offline version of our directional
analysis using a clustering-based learning algorithm. It
first collects the signal strength profile from roughly 360
locations in each environment, along with the actual di-
rection of the AP in each case, and uses clustering tech-
niques to build an optimized model, which is then ap-
plied to the remaining 60 locations for each environment
to generate accuracy results.

• GUIDE [10] – A prior work that measures signal strength
at three locations (forming a triangle) and computes the
signal strength gradient to determine the AP direction.
This method is the most comparable to Borealis since it
is online and requires a very small set of measurements.

In the following, we evaluate Borealis’ accuracy in AP di-
rection estimates using both per-location measurements and
user navigation experiments. We also examine the energy
consumption of Borealis on both Droid and G1 phones.

6.1 Accuracy of Borealis Direction Estimation
We start from examining the accuracy of Borealis’ direc-

tion analysis. Figure 7(a) shows the cumulative distribution
of the angular error in AP direction estimation. The angular
error is the absolute difference in angular degree, between
the estimated AP direction and its true direction. The re-
sults show that Borealis is fairly accurate in the Simple LOS
environment – in 80% of locations, Borealis produces no
more than 30◦ angular error. For the Complex LOS and
NLOS environments where multipath propagation becomes
dominating, Borealis can still maintain an error of no more
than 50◦ and 65◦ for 80% of locations, respectively.

Sources of Large Errors. The above results show that
occasionally, Borealis does produce large errors in direction
estimation, particular for the Complex LOS and NLOS en-
vironments. To understand the cause of such errors, we
studied the signal strength profile of locations with error
higher than 60◦. We observed that in most cases, the sig-
nal profile displays multiple dips, creating multiple peaks in
the Diff function used in the directional analysis. In this
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Figure 7: The performance of Borealis directional analysis. (a) The CDF of the angular error for the three
propagation environments. Borealis is fairly accurate for most of the test locations. (b) When Borealis
produces larger errors, the signal profile often displays multiple dips, which creates multiple peaks in the Diff
function. In this case, Borealis chooses the highest peak to estimate AP direction. (c) We observe a general
trend where the confidence value of a direction estimation scales inversely with the angular error.
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Figure 8: Comparing Borealis to Offline Analysis, MinR, and GUIDE in the three environments. Borealis
significantly outperforms MinR and GUIDE, and is within a small distance from its offline version (Offline
Analysis).

case, Borealis’ direction analysis uses the highest peak to
estimate AP direction (based on eq. (5)). Figure 7(b) plots
the probability of having multiple peaks in Diff, as a func-
tion of the angular error. Clearly, the larger the angular
error, the more likely that it is caused by multiple dips in
the measured signal profile. We also examined the spatial
measurement locations with large estimation errors (> 80o),
and did not find any strong correlation between the two.

Confidence Prediction. Different from conventional so-
lutions, Borealis also measures the confidence of its direction
estimation. Figure 7(c) plots the relationship between the
angular error of the direction estimation and the confidence
value, using measurement data from all three environments.
We observe a general trend that the angular error scales
inversely with the confidence value.

An interesting question is whether the pattern observed
in Figure 7(b), i.e. multiple dips in the signal profile or
multiple peaks in Diff, can be used to refine the confidence
estimation. The answer is no. This is because having large
errors always maps to having multiple peaks in Diff, but
not vice versa. From Figure 7(b) we see that the pattern
appears even for cases with small angular errors.

6.2 Comparison to MinR & Offline Analysis
To examine the optimality of Borealis within the proposed

directional analysis, we now compare Borealis’ sector-based

estimation to MinR, a simple estimation method, and Of-
fline Analysis, the offline version of Borealis that uses train-
ing data to optimize direction decision. The comparison
to MinR allows us to understand the gain of sector-based
analysis, while the comparison to Offline Analysis allows us
to understand the distance between Borealis and the “up-
per bound” performance of our directional analysis. The
comparison is shown in Figure 8 in terms of the statistical
distribution of the angular error.

We make two key observations. First, there is a large
performance gap between MinR and Borealis. For example,
for 80% of locations, the bound on angular error of MinR is
60◦ for Simple LOS, 120◦ for Complex LOS, and 135◦ for
NLOS. This is roughly 2 times the Borealis’ estimation error.
As we have discussed earlier, such large error is because
inherent signal variations create random ripples in signal
strength profile. Thus a single point based direction analysis
is highly sensitive to such random variations, leading to large
errors. These errors are further exacerbated by multipath
propagation in complex environments.

Second, the gap between Borealis and its offline-trained
version is rather small, and even negligible in Simple LOS.
We note that the offline version has the advantage of opti-
mizing the direction estimation mechanism based on train-
ing data, so that it is able to recognize certain patterns in
complex environments and produce a more accurate deci-
sion. On the other hand, the cost of such small improvement



is the large measurement overhead and the fact of being an
offline learning solution requires actual knowledge of the AP
direction. Overall, because the gap between the two meth-
ods is small, we conclude that Borealis is a practical and
effective solution for determining AP direction in real time.

6.3 Comparison to GUIDE
We now turn our attention to GUIDE [10] , the most

relevant work in AP direction prediction using signal mea-
surements. Similar to Borealis, GUIDE operates online, uses
only a single receiver and requires a small set of measure-
ments (at three locations). Different from Borealis, GUIDE
applies a triangle-gradient based solution to estimate the AP
direction.

We implemented GUIDE on our smartphones and exper-
imented it in the three environments. Figure 8 compares
the performance of GUIDE to that of Borealis. We see that
for all three environments, Borealis significantly outperforms
GUIDE. The key reason behind such large performance gap
is that GUIDE (and other gradient based solutions) assumes
that received signal strength degrades with the distance be-
tween the transmitter and receiver. In practice, this does
not always hold, even in the simple LOS environment. Our
own experiments show that the above assumption breaks in
roughly 30% of the measurement cases.

For fairness, we did not compare Borealis to other AP
localization methods, such as [28] and [11] . This is be-
cause these designs either require sophisticated directional
antenna [28] or large measurements [11].

6.4 Locating Indoor APs
We also examined the scenario where the AP is placed

indoors and an outdoor user collects signal measurements to
estimate AP direction. Specifically, we consider the complex
LOS setting in Figure 3 but place the AP inside the office
trailer so that the wall of the trailer blocks all paths from
the AP to the measured locations. The AP is located in
the center of the trailer, away from windows and doors. We
repeat the experiments at the same measurement locations
used in our previous experiments.

In Figure 9, we compare the performance of both Borealis
and GUIDE to prior results when the AP is placed out-
doors. We see that multipath propagation in the indoor
AP scenario does degrade the accuracy of direction esti-
mation. However, the degradation is nearly negligible for
Borealis. More importantly, Borealis still significantly out-
performs GUIDE when locating indoor APs. These results
show that Borealis is effective, and more accurate for lo-
cating indoor APs using outdoor signal measurements than
GUIDE.

6.5 Borealis Navigation Efficiency
We also evaluate Borealis’ end-to-end performance in terms

of user navigation. We randomly selected 40 starting points
in the three environments. They are within 60-140 meters
from the AP and have RSS values around -90dBm. Further
locations are not considered because no AP is detected. This
range is similar to those used by prior work on outdoor AP
location [10, 11].

We compare two Borealis navigation designs: i) naviga-
tion with periodic directional analysis (e.g. the tester rotates
every 20 meters), and ii) confidence-guided adaptive naviga-
tion which determines the next location of directional anal-
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Figure 9: The performance of directional analysis
when outdoor users locate an indoor AP using Bo-
realis or GUIDE. The accuracy is comparable to the
cases where the same AP is placed outdoors.

ysis using the confidence of the current estimation. Specif-
ically, if the confidence is above 0.8, the user rotates again
after walking 30 meters. If the confidence is less than 0.3,
she rotates after 10 meters.

We use two performance metrics: navigation overhead
and measurement frequency. The navigation overhead is
the normalized extra distance traveled to locate the AP:
navigation distance
shortest distance

−1. We compute the navigation distance us-
ing GPS records of the navigation, and the shortest distance
from GPS coordinates of the AP and the starting point. Be-
cause the shortest path might be blocked by obstacles, this
metric serves as the upper bound on the extra distance trav-
eled to locate an AP. On the other hand, the measurement
frequency defines average distance between two consecutive
user rotations. It should be close to 20 meters for the peri-
odic method, but larger for the adaptive design.

Table 1 lists both metrics averaged from the 40 experi-
ments, using the periodic and adaptive methods. We see
that in both Simple and Complex LOS environments, the
adaptive design not only reduces the navigation overhead
but also the measurement frequency. In particular, even in
Complex LOS, it reduces the navigation overhead by half,
and only invokes user rotation every 30+ meters. The gain
is smaller in NLOS due to lower confidence in our directional
analysis.

Figure 10 plots three sample navigation paths for the
NLOS environment. We see that the navigation paths gen-
erally follow feasible walk paths, which demonstrates the
efficiency of our proposed solution. Buildings and trailers
do affect the accuracy of Borealis’ direction estimates. But
such errors are easily avoided by the user moving to a differ-
ent location. An interesting observation is that multipath
propagation is not always harmful. Often the strongest sig-
nal component comes from a path circumventing the obsta-
cle, and the measured signal profile will indicate a strong
dip near the direction of the open path. While it might not
point to the exact AP direction, it certainly helps the user
to identify a feasible path to the AP.

Borealis vs. GUIDE. We repeat the above experiments
using GUIDE and its navigation procedure presented in [10].
For practical reasons, we stop GUIDE’s navigation process
when its navigation overhead is greater than 200% for Simple



Navigation Measurement
Overhead Frequency

Simple LOS
Periodic 48% 22.59m
Adaptive 15% 31.26m

Complex LOS
Periodic 74% 21.63m
Adaptive 37% 30.62m

NLOS
Periodic 134% 20.45m
Adaptive 107% 21.47m

Table 1: Performance of Borealis’ navigation in the
three propagation environments. Adaptive naviga-
tion guided by the confidence value not only reduces
measurement frequency, but also shortens naviga-
tion distance.

walking path
measurement points

A
B

C

starting point

Figure 10: Sample navigation paths of Borealis in
the NLOS environment. Points A, B, C mark the
three starting points, and squares mark the locations
of user rotation.

LOS and 500% for Complex LOS and NLOS. Note that un-
der this constraint, Borealis, using both periodic and adap-
tive navigation, can always reach the AP within a distance of
2m. But GUIDE’s navigation rarely finds the AP. Only for
15% of all cases is GUIDE able to approach the AP within
11m. For all other cases, the user is still 35-184m away from
the AP and does not have an accurate angular direction to
the AP location. This result is consistent with the results of-
fered by [10]. It is not surprising, since Borealis significantly
outperforms GUIDE in direction analysis (Figure 8).

6.6 Energy Consumption
We now evaluate Borealis’ battery consumption using both

Droid and G1 phones. Our analysis leverages the battery us-
age summary tool offered by Android. In addition to iden-
tifying the total battery usage of each Borealis’ directional
analysis operation, we also study the distribution of energy
costs across the different components involved.

We configure our energy experiments as follows. Because
the Android battery report has a coarse granularity (per 1%
battery usage for G1 and 5% for Droid), we use a brand new,
fully charged battery for each phone and run Borealis repeat-
edly to drain the battery. For each experiment, we also call
the Android PowerManager API to log the phone battery
level every 10 minutes. We verified offline that this API has
negligible impact on battery usage. Using the battery log
and the Borealis trace, we compute the energy consumption
of each Borealis operation. We use two Droid and two G1

Droid G1
% of battery consumed
per Borealis operation 0.36% 0.78%
% of battery consumed

ignoring Display and Standby 0.15% 0.29%

Distribution of Energy Usage across Components
Display 54% 32%

Cell Standby 3% 31%
WiFi Radio 5% 12%

OS 21% 11%
Other Borealis Activity 17% 13%

Table 2: Energy consumption analysis of Borealis’
directional analysis on Droid and G1 phones.

phones in our experiments, and show the average results for
each phone category.

Table 2 summarizes the results of our energy experiments,
including a detailed breakdown to five major components (as
reported by the Android battery usage summary). The total
energy consumption of a single Borealis directional analysis
takes 0.36% of the total battery for Droid phones and 0.78%
for G1 phones. The majority of energy cost comes from
Display (for both phones) and Cell Standby (for G1). If we
remove these factors, the battery use of a Borealis direction
analysis operation reduces to 0.15% for Droid and 0.29% for
G1. The OS component of Borealis consumes a substantial
bit of energy. This is not due to computation, but the fact
that each Android app must run inside its own lightweight
virtual machine.

Finally, we note that WiFi uses much less energy com-
pared to other components, because Borealis’ signal mea-
surements are passive and do not involve packet transmis-
sion. More importantly, Borealis only requires signal mea-
surements during user rotation, and each navigation only
requires a user rotation every 20-30m. Therefore, we con-
clude that normal usage of Borealis will not significantly
impact the battery life of a smartphone.

7. CONCLUSION
In this paper, we described Borealis, a smartphone-based

system for locating WiFi access points in real time. While
our tests show Borealis to be effective on Android phones in
different environments, earlier measurements suggest that
the same techniques would be effective on other smartphone
platforms as well.

More importantly, the underlying principle behind Bore-
alis, using signal dips from blocking obstacles to locate wire-
less transmitters, is general and could be applied to locate
other types of transmitters. For example, Figure 11 plots
two sample signal strength profiles obtained from a rotat-
ing user holding a USRP2 GNU radio operating on 2.4GHz
and 5GHz. It is clear that the same signal-blocking arti-
fact exists for these frequencies as well. For transmitters on
lower frequencies that penetrate deeper and exhibit more
multipath propagation behavior, users can potentially “ro-
tate” or move around larger obstacles such as trees, vehicles,
or buildings. Development of these systems could address
significant network management issues in the future, such
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as the enforcement of authorized transmissions in dynamic
spectrum networks.
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