

De-anonymization of Mobility Trajectories: Dissecting the Gaps between Theory and Practice

Huandong Wang¹, Chen Gao¹, Yong Li¹, Gang Wang², Depeng Jin¹, Jingbo Sun³

¹Tsinghua University, China

²Virginia Tech

³China Telecom Beijing Research Institute

Increasing Concern on Privacy/Security

Anonymized user trajectories are increasingly collected by ISPs

High research and business value

Growing privacy concern

ISPs are motivated to monetize or share user trajectory data

De-anonymization attack

How likely users can be de-anonymized in the shared ISP trajectory dataset?

Now Those Privacy Rules Are Gone, This Is How ISPs Will Actually Sell Your Personal Data

🖾 🕤 🍞 🧓 🚱

Thomas Fox-Brewster, FORBES STAFF

I cover crime, privacy and security in digital and physical forms. FULL BIO

De-anonymization Attack: Theory and Practice

Appalling Theoretical Privacy Bound

➢ 4 location points uniquely re-identify 95% users [Scientific Report 2013]

Is this true in practice?

Practical Challenge: Lack of large real-world ground-truth datasets

Small datasets

✓1717 users in [WWW 2016]

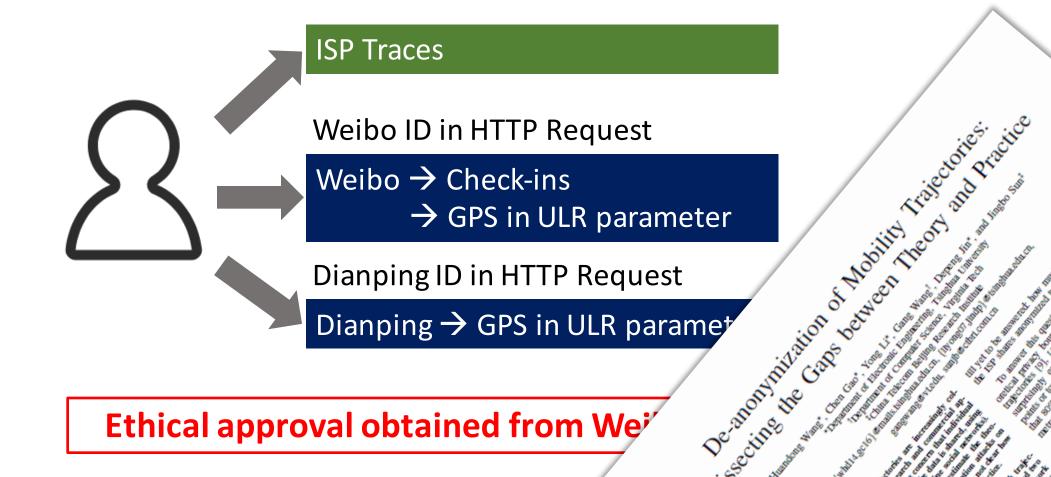
Synthetized datasets

✓ Parts of the same dataset [TON 2011]

Our Approach: Collect Three Real-world Ground-truth Datasets

Ground-Truth: Traces from the same set of users

Dataset	Total# Users	Total# Records
ISP	2,161,500	134,033,750
Weibo App-level	56,683	239,289
Weibo Check-in (Historical)	10,750	141,131
Weibo Check-in (One-week)	506	873
Dianping App-level	45,790	107,543


■ISP Dataset

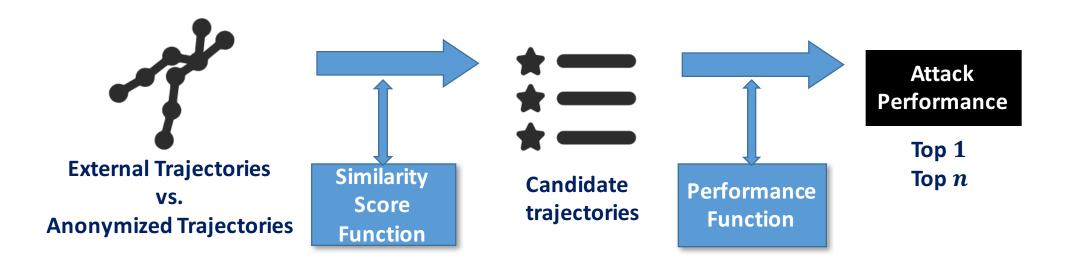
- Shanghai, 4/19-4/26, 2016 (victim dataset)
- ≥2 million users
- > Access logs to cellular tower \rightarrow Location traces

Weibo Dataset: One of the largest social networks in China (external information)

Dianping Dataset: "Chinese Yelp" (external information)

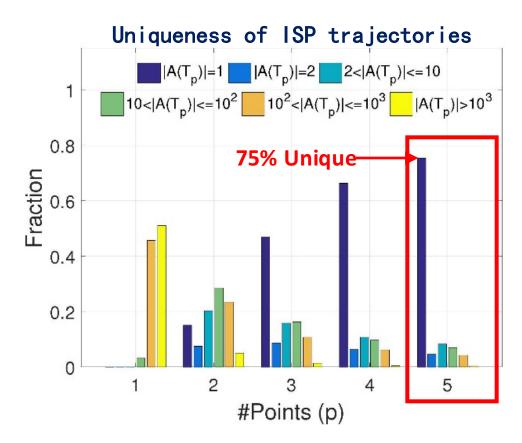
How to Obtain the Ground-Truth?

Ethical approval obtained from We⁷


De-anonymization Attack: Threat Model

Anonymized Trajectory Data Published by ISP

>Anonymization: Replace user identity with the pseudonym


Adversary

- ➢Match the anonymized traces (e.g., ISP traces) and external traces (e.g., Weibo/Dianping traces)
- \succ Social network has PII \rightarrow real-world identifier

De-anonymization: Theoretical Bound based on Uniqueness

- Number of points sufficient to uniquely identify a trajectory
- $\blacksquare T_p$: Randomly sampled p points
- • $A(T_p)$: find all trajectories containing the p points of T_p
- Uniqueness: $|A(T_p)| = 1$?

5 points are sufficient to uniquely identify 75% trajectories! High potential risk of trajectories to be de-anonymized!

De-anonymization Attack: Actual Performance

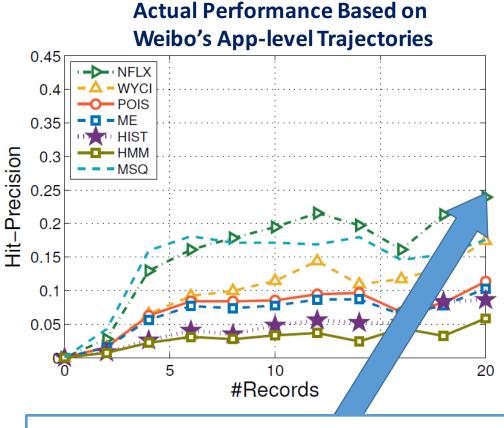
Implement 7 state-of-the-art algorithms

"Encountering" event

➢POIS [WWW 2016]

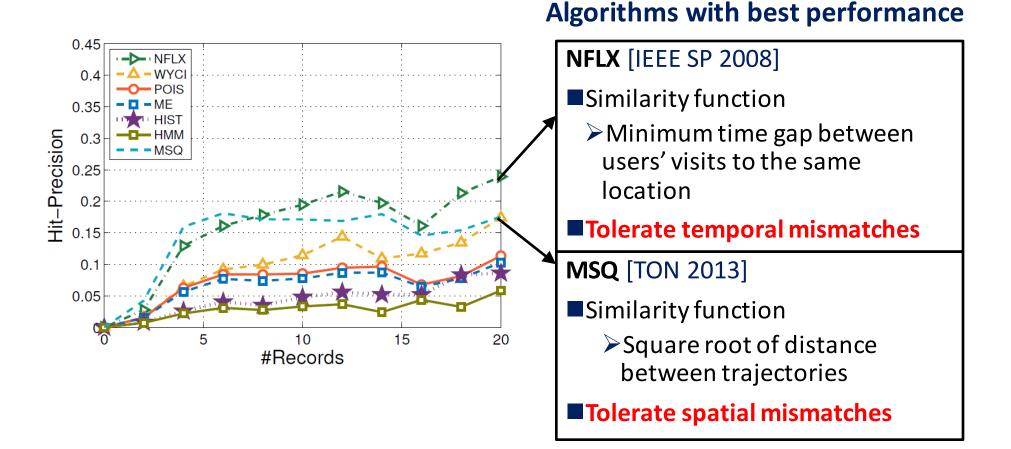
► ME [AIHC 2016]

Individual user's mobility patterns

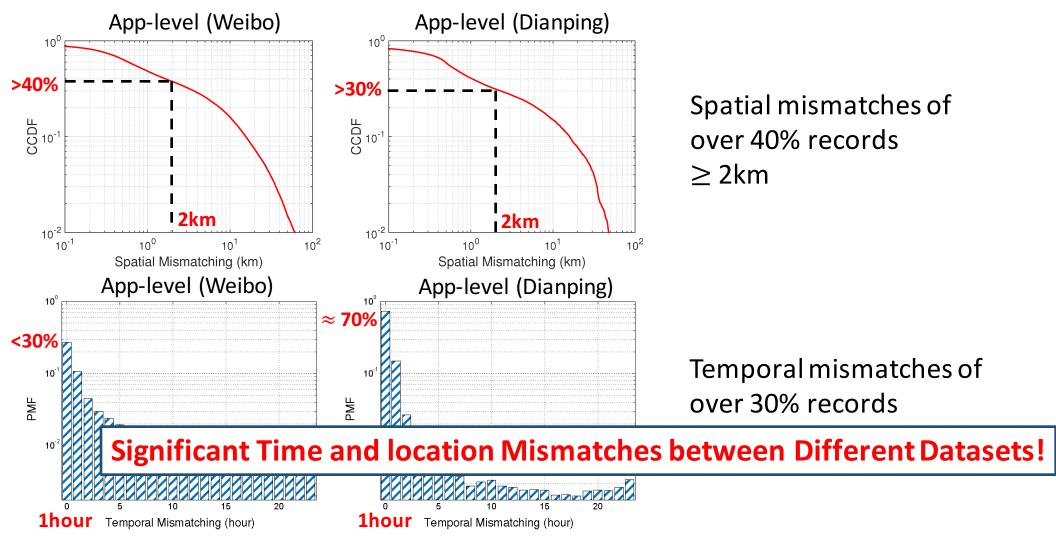

➤HMM [IEEE SP 2011]

WYCI [WOSN 2014]

➢ HIST [TIFS 2016]


Tolerating temporal/spatial mismatches
 > NFLX [IEEE SP 2008]
 > MSQ [TON 2013]

Hit-precision $h(x) = \begin{cases} \frac{k-(x-1)}{k}, & \text{if } k \ge x \ge 1, \\ 0, & \text{if } x > k. \end{cases}$


Maximum hit-precision is only 25%! Far from the privacy bound!

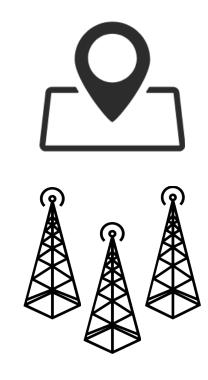
Reasons Behind Underperformance

Existing algorithms tolerating spatio-temporal mismatches have the best performance

Reasons Behind Underperformance: Large Spatio-Temporal Mismatches

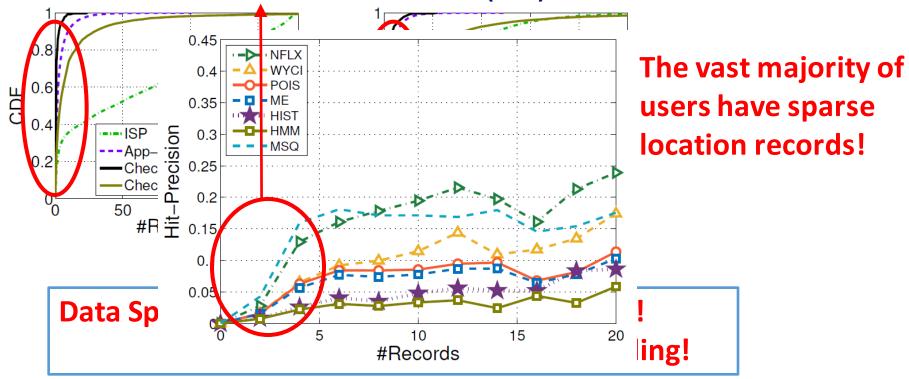
Potential Reasons behind the Mismatches

GPS errors

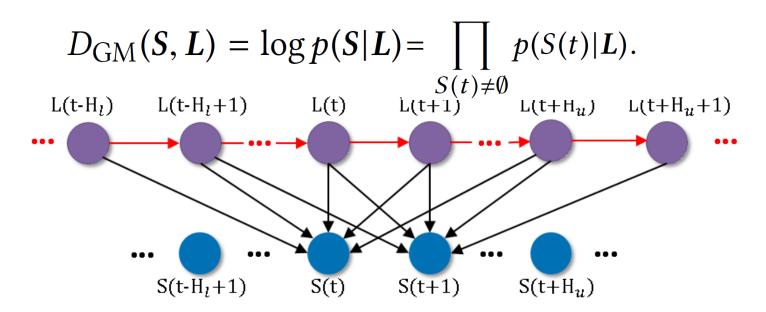

GPS unreachable locations (Indoor, underground)
 Lazy GPS updating mechanisms [UbiComp 2007]

Deployment of base stations

>Lower density \rightarrow larger mismatches


User behavior

39.9% remote (fake) check-ins [ICWSM 2016]
 Earn virtual rewords, compete with their friends


Reasons Behind Underperformance: Data Sparsity

Cunsparage lasting ties or dection worse performance

Can we bridge this gap?

Our De-anonymization Method

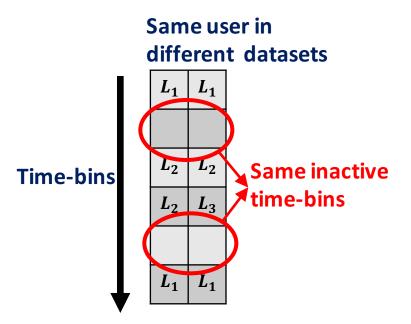
1) Modelling Spatio-Temporal Mismatches: Gaussian Mixture Model (GMM) $P(S(t)|L) = \sum_{p=-H_l}^{H_u} \pi(p) \cdot \mathcal{N}(S(t)|L(t-p), \sigma^2(p))$

> Parameters chosen by empirical values or estimated by EM algorithm

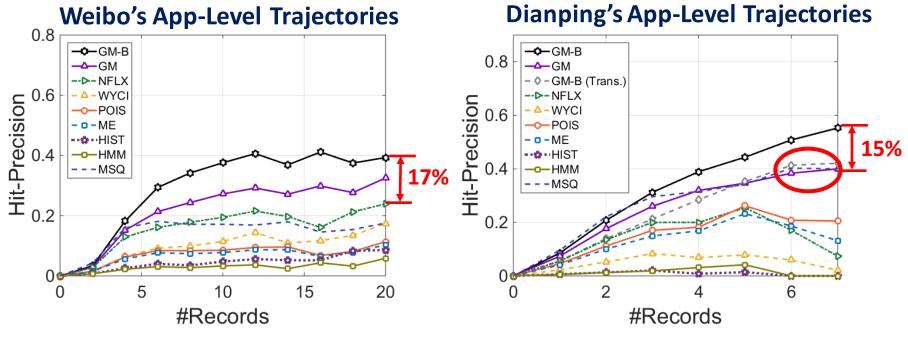
2) Modelling Users' Mobility Pattern: Markov Model

Solving the **data sparsity** issue: rare "encountering" event

Missing locations are estimated by Markov Model


Our De-anonymization Method

3) Use Location Context


Solve the data sparsity issue
 Use aggregated user behavior at locations
 To infer individual user behavior (location transition probability)

4) Use Time Context

 "Whether the user is active" is helpful
 Modelling user inactive period (previously ignored feature)

Performance Evaluation

- 7 state-of-the-art algorithms
- Our proposed algorithm: **GM-B**, **GM**
- Transferred parameters: GM-B (Trans.)

Our proposed algorithms outperform baselines by over 17%

Summary

Large-scale Ground-truth Datasets

ISP trajectories with over 2 million users
 2 different social networks, 2 different types of external information

Demonstrate the Gaps between Theory and Practice

- High theoretical bound
- ➢Low actual performance

Bridge the Gaps between Theory and Practice

➢ Considering spatio-temporal mismatches, data sparsity, location/time context
 ➢ Improve the performance → confirm our observations

Thanks you!

For Data Sample and Code, Please Contact whd14@mails.tsinghua.edu.cn liyong07@tsinghua.edu.cn

Reference

[Scientific Report 2013] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, "Unique in the crowd: The privacy bounds of human mobility," Scientific reports, vol. 3, p. 1376, 2013.

[WWW 2016] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi, "Linking users across domains with location data: Theory and validation," in Proc. WWW, 2016.

[AIHC 2016] A. Cecaj, M. Mamei, and F. Zambonelli, "Re-identification and information fusion between anonymized cdr and social network data," Journal of Ambient Intelligence and Humanized Computing, vol. 7, no. 1, pp. 83–96, 2016.

[WOSN 2014] L. Rossi and M. Musolesi, "It's the way you check-in: identifying users in location-based social networks," in Proc. ACM WOSN, 2014.

[TIFS 2016] F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli, "Where you are is who you are: User identification by matching statistics," IEEE Transactions on Information Forensics and Security (TIFS), vol. 11, no. 2, pp. 358–372, 2016.

[IEEE SP 2008] A. Narayanan and V. Shmatikov, "Robust de-anonymization of large sparse datasets," in Proc. IEEE SP, 2008.

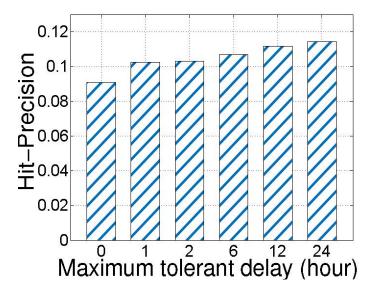
[IEEE SP 2011] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, "Quantifying location privacy," in Proc. IEEE SP, 2011.

[TON 2013] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao, "Privacy vulnerability of published anonymous mobility traces," IEEE/ACM Transactions on Networking (TON), vol. 21, no. 3, pp. 720–733, 2013.

[UbiComp 2007] N. Banerjee, A. Rahmati, M. Corner, S. Rollins, and L. Zhong, "Users and batteries: interactions and adaptive energy management in mobile systems," Proc. ACM UbiComp, 2007.

[ICWSM 2016] G. Wang, S. Y. Schoenebeck, H. Zheng, and B. Y. Zhao, ""will checkin for badges": Understanding bias and misbehavior on location-based social networks." in Proc. ICWSM, 2016.

Metric of the ranking


Hit-precision:

$$h(x) = \begin{cases} \frac{k - (x - 1)}{k}, & \text{if } k \ge x \ge 1, \\ 0, & \text{if } x > k. \end{cases}$$

If the right one rank 1 in candidate trajectories, h(x) = 1. If the right one rank 3 in candidate trajectories, h(x) = (k - 2)/k.

Performance Evaluation: Parameter Study


Impact of Maximum Tolerant Delay

Larger Tolerant Delay=>Better Performance

- ➤0->1: Significant improvement
- >12->24: Little improvement

Impact of Parameters in GMM

Comparable Performance

- Empirical vs. Estimated
- ➢ Robust to parameter settings.