
Privacy, Availability and Economics in the Polaris
Mobile Social Network

Christo Wilson, Troy Steinbauer, Gang Wang, Alessandra Sala, Haitao Zheng and Ben Y. Zhao
Department of Computer Science, U. C. Santa Barbara, Santa Barbara, CA USA

{bowlin, troysteinbauer, gangw, alessandra, htzheng, ravenben}@cs.ucsb.edu

ABSTRACT
While highly successful, today’s online social networks (OSNs)
have made a conscious decision to sacrifice privacy for availabil-
ity and centralized control. Unfortunately, tradeoffs in this “walled
garden” architecture naturally pit the economic interestsof OSN
providers against the privacy goals of OSN users, a battle that users
cannot win. While some alternative OSN designs preserve user
control over data, they do so by de-prioritizing issues of economic
incentives and sustainability. In contrast, we believe anypractical
alternative to today’s centralized architecture must consider incen-
tives for providers as a key goal. In this paper, we propose a dis-
tributed OSN architecture that significantly improves userprivacy
while preserving economic incentives for OSN providers. Wedo
so by using a standardized API to create a competitive provider
marketplace for different components of the OSN, thus allowing
users to perform their own tradeoffs between cost, performance,
and privacy. We describePolaris, a system where users leverage
smartphones as a highly available identity provider and access con-
trol manager, and use application prototypes to show how it allows
data monetization while limiting the visibility of any single party
to users’ private data.

1. INTRODUCTION
Online social networks (OSNs) such as Facebook and LinkedIn

have rapidly evolved from messaging systems for teenagers,to in-
dispensable tools for communication and collaboration forbusi-
nesses and personal users of all types. Today, account membership
in one or more of the major OSNs is no longer optional.

Moving forward, the long-term implications on user privacyare
profound. Current OSNs found success in a “walled garden” archi-
tecture, where all user data is managed by a single, trusted OSN
provider. This centralized model makes an explicit tradeoff that
guarantees data availability and viable monetary incentives for OSN
providers by sacrificing user control over their personal data. More
importantly, tradeoffs in this architecture naturally pitthe economic
interests of OSN providers against the privacy concerns of their
users,i.e. providers generate revenue by mining user data for adver-
tisement placement, which is impossible if users intentionally hide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’11, March 1–3, 2011, Phoenix, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0649-2/11/03 ...$10.00.

their data from providers via encryption [2, 14]. With providers
holding leverage over users’ data and relationships, this is a battle
that users cannot win.

But is this tension necessary? Researchers are studying alterna-
tives to the “walled garden” model in the form of distributedsocial
networks, where each user manages her own data either locally on
her machine, or on cloud-based storage. These systems all strive
for total privacy by leveraging end-to-end encryption of user data.
These designs effectively improve privacy and maintain availabil-
ity by replacing the economic role of OSN providers with delegated
monetary and management costs to the user.

While potentially viable from a technical standpoint, bothap-
proaches face serious questions of economic viability and sustain-
ability. First, some designs assume that users can host their own
profile data on home servers, and try their best to maintain avail-
ability via replication [4]. The same approach was proposedfor
numerous peer-to-peer storage systems, and has met with little suc-
cess [3]. For example, most casual Facebook users will not have a
highly available home server for their OSN content. A secondap-
proach calls for the user to pay for her own virtual machine stored
and managed by a cloud provider [12]. While this simplifies the
availability problem, significant evidence shows that mostOSN
users are unwilling to pay for what many consider a free service [5].
A “We Will Not Pay To Use Facebook” group on Facebook grew
to more than 2 million members before disappearing.

In this paper, we explore the question: is there an architecture
that occupies the middle ground between these two extremes?One
that balances the monetary needs of OSN providers with users’
need for control over their data, all while providing high data avail-
ability? We describePolaris, an architecture for OSNs that pre-
serves monetary incentives for OSN providers to store and manage
user data, while also mitigating the systemic privacy concerns as-
sociated with monolithic OSNs. To accomplish these goals, Polaris
leverages two observations:

• Mobile clients are becoming the dominant platform for web
browsing and accessing OSNs. “Smartphones” equipped with
significant storage (8+GB), computation (1Ghz CPU) resources,
and 3G Internet connectivity will soon dominate the cellphone
market [10]. Since they are always-on, and constantly within
arm’s reach, these devices represent the ideal interface for host-
ing and managing a user’s social identity.

• Recent proposals to architect and standardize open social plat-
forms demonstrate that third-party services can and will com-
pete for sustainable revenue in the OSN market. Using open
standards and APIs such as OpenID [8], OAuth [6] and OSta-
tus [11], users can replace centralized, monolithic OSN providers
with a collection ofcommoditized OSN services in the cloud, all
competing to provide standardized OSN services to the user.

Polaris uses a distributed OSN model, where functionality is di-
vided into different application domains,e.g. status updates and
photo sharing. For each domain, a user can choose from compet-
ing OSN service providers,e.g. Picasa, Flickr, and PhotoBucket.
Polaris stores sensitive data, like personal profile, on themobile
device1, but allows Polaris-enabled service providers to host data
specific to their application. Providers implement a commonAPI
that enables users to connect with friends and share social data irre-
spective of each individual user’s choice of providers. Through an
application on the mobile device, users can update their data and
specify policies that define how providers should share their data
with other users. Finally, the mobile device can also act as secure
storage for data deemed highly sensitive by the user.

Key Benefits. Polaris leverages this architecture to provide
three key benefits. First, Polaris provides improved privacy com-
pared to current centralized OSNs. Highly sensitive data isstored
only on the mobile device, and access is protected by the Polaris
users’ own privacy policies. Less sensitive social data is hosted
and managed by application-specific providers chosen by theuser.
Since typically collocated OSN functions are partitioned across
multiple distinct providers, the user only exposes a small portion
of her data to any one provider. Each user retains control over
providers, and can revoke access to any that fail to respect her pri-
vacy policies or provide poor service. This is made possibleby
standardized APIs that foster a competitive market for commodi-
tized OSN services. Second, Polaris preserves the economicin-
centives for OSN providers to offer free storage and managedap-
plications to OSN users. Application providers have accessto the
limited data they need for their functionality, and can generate con-
textual ad revenue,i.e. ads based on status or photo content. Fi-
nally, Polaris offers each user a flexible choice between cost and
privacy. Privacy conscious users can choose to pay providers that
offer strong security,e.g. via fully encrypted data stores, while
cost-conscious users can opt for free providers that generate rev-
enue from data mining and targeted advertising.

Challenges. Running an OSN on mobile devices has several
associated technical challenges stemming from their energy, band-
width, and connectivity constraints. Hosting a user’s entire set of
social data from their mobile device would afford excellentprivacy,
but is not feasible. While these devices have adequate computa-
tional and storage capacity, serving data over the cellularnetwork
will be slow, and will quickly exhaust the device’s battery.

Instead, the Polaris software on each mobile device acts as the
user’s identity manager, and generates and distributes authorization
tokens to control data access. While the “primary” copy of all data
is stored on the mobile device, service providers host data pertinent
to their application and provide the necessary computationand data
delivery needs. The user device also serves as a lightweightnaming
and lookup service, and gives a user information about a friend’s
choice of service providers, as well as pointers to find the friend’s
content on the provider. The standardized Polaris APIs ensure that
friends will be able to access each other’s social content even if they
chose different providers for the same application. Polaris makes
liberal use of caching for static data, further reducing themobile
device’s role in ordinary transactions, and improving dataavail-
ability. Finally, users can choose between multiple providers of
the same OSN service (e.g. photo-hosting) based on performance,
security, or cost. Decoupling different OSN services (e.g. photos,
direct messages, blogs) allows providers to monetize the user data
they have access to, while helping Polaris preserve privacyagainst
untrustworthy providers.

1Mobile devices include smartphones, tablets, e-readers,etc.

Roadmap. We begin in Section 2 by describing the Polaris
architecture, its key challenges, and our approaches to addressing
each of them. Next, in Section 3, we describe basic OSN operations
in Polaris using examples. We then discuss how to use primitives in
Polaris to build core components necessary for today’s full-featured
OSNs in Section 4. Finally, we describe an initial prototypeof
Polaris for Android phones in Section 5, and conclude in Section 6.

2. ARCHITECTURE
In this section, we present the high level architecture for Po-

laris, our social network platform designed to improve usercon-
trol over their data while providing a viable economic environment
for third-party OSN providers. We begin by summarizing exist-
ing approaches with similar goals, and use it to set the context for
our work. We then discuss our architecture, highlighting key chal-
lenges to our approach and describing how the Polaris architecture
meets these challenges.

2.1 Existing and Alternative Architectures
The popularity of OSNs and the commensurate rise in privacy

concerns have motivated a number of proposals for distributed OSNs
that do not require users to give up their data to any particular
(potentially untrustworthy) provider. Some propose usersmaintain
their own data, and leverage P2P distributed hash tables (DHTs) to
store, search, and access data [4, 7]. These DHT-based OSNs face
the same challenges as all P2P systems, such as maintaining data
integrity and availability in high-churn, distributed scenarios [3], as
well as the inherent security risks in DHT systems.

Another proposed alternative is to use cloud-based hostingser-
vices to store social data. In Vis-a-Vis [12], users store and manage
their data using virtual machines hosted in the cloud, whilePer-
sona [2] advocates using Attribute-Based Encryption and group key
management to securely distribute social data. Contrail [13] is a
mobile device-centric OSN that leverages a store-and-forward ser-
vice hosted in the cloud to relay encrypted data to and from users.

All of these approaches achieve strong privacy by eliminating
centralized OSN providers. However, this shifts costs and manage-
ment efforts to end-users, who must now pay the monetary costs
of hosting data on cloud providers. We believe these effortsare
unlikely to gain traction, because history has shown that users are
often unable or unwilling to take on the efforts or monetary costs of
managing complex systems [5]. In this case, users are more likely
to remain at existing, centralized OSNs, even if this means sacrific-
ing privacy completely.

2.2 Leveraging Mobile Devices
Our primary goal is to create an OSN architecture that improves

privacy for OSN users, while maintaining high levels of availability
and performance associated with centralized OSNs. Since webe-
lieve users are unable or unwilling to take on the associatedcosts,
our approach is to design an architecture that provides sufficient
economic opportunities to motivate OSN providers to play the data
hosting and management role.

Our insight is to leverage user’s mobile devices as the control
center for a distributed OSN platform. Mobile devices such as
smartphones are an excellent fit for this task for several reasons.
First, mobile devices are ubiquitous, and tightly tied to each in-
dividual. Second, unlike personal computers or laptops, mobile
devices have much higher availability than desktop PCs. Finally,
devices like smartphones and digital assistants already manage peo-
ple’s social contacts and other sensitive personal information, mak-
ing the transition to hosting OSNs a natural one.

Google Buzz

Foursquare

Twitter
Legacy

OSN

Picasa

...

...

Figure 1: The Polaris system. Users select commoditized OSN
providers for different application domains. Users retrieve social data
directly from their friend’s providers. Users on legacy OSNs receive
updates from Polaris via site-specific APIs that bridge the two OSNs.

Despite their many advantages, the use of mobile devices as an
OSN platform also presents several challenges:

• Resource Constraints.The high availability of mobile devices
comes with two caveats: limited battery life and a low band-
width network connection. These constraints limit the sizeand
amount of social data that mobile devices can host.

• Data Availability. Energy and bandwidth constraints mean that
some social data (e.g. photos) cannot be hosted on the mobile
device. Instead, they must be hosted on highly available infras-
tructure with high capacity storage and bandwidth.

• Network Restrictions. Mobile devices are not universally ac-
cessible over the Internet: cellular providers routinely firewall
access to their networks, and force mobile devices to accessthe
Internet through proxies. These restrictions complicate using
mobile devices as servers for social data.

• Device Fallibility. Mobile devices are often broken, lost, or
stolen. Data on the device needs to be backed-up frequently to
facilitate account restoration.

Note that we do not include storage constraints in our list ofchal-
lenges above. Multimedia social content such as a user’s photo
library can grow to GBs in size. However, most modern devices
have expandable storage via multi-gigabyte SD cards. If storage
does become an issue, users can use desktops to provide permanent
backup for content, and erase multimedia files after they have been
replicated to the provider.

2.3 Commoditizing OSN Services
The four challenges outlined above prevent mobile devices from

being the sole component in a distributed OSN.Commoditized so-
cial network services can mitigate these issues. Much of the heavy
lifting can be offloaded to third party service providers that utilize
their own solutions for high availability (i.e. clouds). This helps
mobile devices preserve power so they can provide the user inter-
face and host sensitive data. Since no single provider has access to
all of a user’s data, this minimizes the threat a single provider can
pose to privacy. Furthermore, the standardized APIs that Polaris
services must support ensure that a user’s data remains portable in
the event that any one provider is compromised or violates her ex-
pectations of privacy. Figure 1 depicts the overall Polarissystem.

Economic Incentives. We believe that there are ample eco-
nomic incentives for providers to offer OSN services, even if they
are not the center of the Polaris OSN. In Polaris, all APIs useHTTP
REST over SSL, so communications are secure from eavesdrop-
ping. However, there is no requirement for data itself to be en-
crypted; this capability is left as an additional feature that com-
moditized services may offer. This means that services can make

money the traditional way, by serving contextual ads along with
hosted content. Services can also sell large scale data-mining and
analysis capabilities, even though they may only host a specific
type of data, and only for a subset of all Polaris users. Even when
user’s identities are anonymous, it is still possible to mine streams
of social data en-mass to perform real-time sentiment and popular-
ity analysis, producing valuable results and generating revenue.

Creating an open market of commoditized services opens up new
avenues for competitive revenue generation. Requiring services to
support standardized APIs creates a wide-open playing fieldfor
companies to enter the market and compete for customers by inno-
vating and differentiating their services. One way to do this is for
providers to offer different tiers of service. For example,a photo
hosting service might offer a basic, free package, but also apaid,
premium package that enables hosting of higher resolution images,
more storage space, and advanced online editing tools.

As mentioned above, service providers can also use securityand
privacy as a selling point. Providers can offer more security con-
scious users anonymous, fully-encrypted data storage facilities for
a fee. This fosters an environment where security conscioususers
with higher levels of technical acumen can be catered to specif-
ically, while still allowing them to interact with other, more cost
conscious users who use less secure commoditized services.

2.4 Distributed Access Control
While commoditized services address data availability issues and

enhance privacy in an economically sustainable way, they also cre-
ate an additional challenge for Polaris:

• Distributed Access Control.For social data hosted directly on
the user’s mobile device, controlling access is trivial. However,
hosting social data across a multitude of distributed services
requires that we develop very reliable distributed access control
mechanisms to preserve security and privacy.

To fully leverage commoditized services, users need a clear, sim-
ple, unified way of managing access to their data that is hosted re-
motely. To solve this challenge, the Polaris application oneach
mobile device can be seen as a security “kernel.” This kernelacts
as the sole identity provider for the user, manages access control
lists (ACLs) for the user’s data, and issues authorization tokens to
other users and services. Polaris pushes these policies to the user’s
commoditized services via standardized APIs so that they obey the
data access rules the user has defined.

Since all security sensitive operations (adding new friends or ser-
vices, changing privacy settings,etc.) must serialize through the
kernel on the user device, this allows Polaris to decouple data man-
agement and enforcement of security policies. The mobile device
only needs to deal with a minimal number of policy management
tasks that are well within the limits of its battery and bandwidth
constraints. Meanwhile, the bulk of the user’s data is stored away
from the kernel of the system by external providers. This model
affords Polaris very good performance and security isolation: i.e.
even if an individual component (mobile device, commoditized ser-
vice) goes offline, the user’s security policies are unaffected, and
overall data availability remains high.

3. POLARIS BASICS
In order to further clarify the operation of our system, we now go

into greater details of some of the basic operations of Polaris. These
descriptions are meant to provide the high-level intuitionof how the
final system will operate, without delving into the exact specifics of
APIs and protocols. In Section 5 we provide more concrete details
of an actual prototype of Polaris.

Name: Alice

Age: 25

Status Svc: Buzz

Con!rm ?

Google Buzz

1. Sign-up

Request

2. Negotiate

and Con!rm

3. Device

and Service

Communicate

Figure 2: Setting up Polaris. (1) Alice creates a profile and signs up
for commoditized services. (2) Alice’s device and the service negotiate,
then Alice manually confirms the sign-up. (3) Alice’s deviceand her
services can now communicate freely.

First Steps. Figure 2 depicts the initial setup process for Po-
laris. A hypothetical user named Alice installs the Polarisclient
software on her mobile device and inputs the details of her social
profile. Polaris automatically generates a unique, cryptographic
identifier for Alice. Alice then selects what commoditized services
she would like to use for things like updating her status, storing her
photos,etc. Polaris contacts each service and requests a new user
sign-up. This initiates a negotiation process during whichAlice’s
identity is verified, and the service informs Alice of its terms and
conditions, along with what personal data of hers it needs toac-
cess in order to function. Alice is free to reject requests ifshe feels
the service is requesting too many privileges and select a different
commoditized service to fill the role. If Alice finds the service ac-
ceptable, she confirms the new account sign-up, and Polaris and the
service exchange unique authorization tokens to verify each other
in the future. Alice can now interact with the service’s APIs, and
the service can push notifications to her mobile device.

The list of commoditized services that a user leverages are stored
as part of her social profile by Polaris. When a user’s friendsquery
her device for profile information they also receive this list of ser-
vices. They can use this information to locate the remainderof the
user’s content that is hosted remotely. Users can revoke a service’s
access to their data at any time by deleting its authorization token.
Similarly, services that users only wish to use temporarilycan be
issued tokens with a-priori expiration dates.

User Identity and Bootstrapping Communications. Polaris
utilizes two methods for users to uniquely identify themselves. The
first is an OpenID URL, which provides a useful rendezvous point
for others wishing to contact the user. This URL can resolve to
a light-weight proxy that maintains a persistent connection to the
user’s mobile device. Maintaining such a connection is unlikely to
significantly affect the device’s battery life. For example, Google
maintains a persistent connection to all Android phones with mini-
mal impact on these devices. Proxy indirection is necessarydue to
firewalls that and NATs that impede direct connections to mobile
devices on cellular networks.

The second method uses the globally unique, routable identi-
fiers that are already associated with mobile devices. As we will
demonstrate in Section 5, it is possible to use a data/SMS protocol
to bootstrap traditional network connections to mobile devices. For
example, consider two friends in the Polaris OSN, Alice and Bob,
who have exchanged phone numbers. If Alice wants to view Bob’s
profile, Alice can send Bob a query over SMS stating her current IP
and asking for Bob’s current IP. Bob replies with his currentIP, at
which point Alice and Bob can use UDP hole punching techniques
to communicate directly over the Internet.

Google Buzz Foursquare

1. Request and

Con!rm

Friendship

2. Update

ACLs

@
3. Bob May

Access Alice’s

Services

Figure 3: Friending a new user. (1) Alice and Bob exchange friend
requests and manually confirm the relationship. (2) Each user sends
updated ACLs to their services. (3) Alice and Bob can now directly
access each others’services.

The data/SMS communication approach has the advantage of al-
leviating the need for proxies to circumvent cellular network fire-
walls. Furthermore, by using the mobile device’s data connection
for the majority of data transfer we leverage the fastest connectiv-
ity available to the device while minimizing the use of costly SMS
messages. In the event that a user is uncomfortable giving out their
mobile number, they can use a phone number aliasing service like
Google Voice to mask their true number, or rely on an alternate
channel such as e-mail or instant messaging. If the identifier asso-
ciated with an alternate channels is compromised it can simply be
discarded and replaced without affecting the user’s primary phone
number or e-mail account.

Friending and Access Control. Controlling access to infor-
mation stored on users’ mobile devices is insufficient for a privacy
centric OSN: access control must also extend to data hosted by
commoditized services. Part of the standardized API that com-
moditized services must support is the ability for users to upload
and manage ACLs for data stored on that service. This extendsthe
privacy protection offered by Polaris from the user’s mobile device
onto remote services as well.

Polaris supports two methods for “friending” other users. The
first is proximity based: users in direct contact can quicklyand
securely trade information using the local area networkingcapa-
bilities of their mobile devices. The second method involves more
traditional, asynchronous friend requests. Friend requests can be
directed to users via their OpenID or their phone number, at which
point the request is stored pending acceptance.

Figure 3 shows the process of friending and establishing dis-
tributed access controls in Polaris. Alice and Bob bootstrap the
friendship process by sending friend requests to each other. Each
user’s device contacts the other in order to perform identity verifi-
cation, confirm the friendship, exchange authorization tokens, and
retrieve profile data from the new friend. During this exchange,
Alice sets the access privileges that Bob has to her data, andvice-
versa. Once Alice has confirmed the friendship, her device pushes
updated access control policies to her commoditized services. This
serves the dual purpose of informing the services she is now friends
with Bob, and telling them what social data (if any) Bob is allowed
access to. Bob can then query Alice’s services (which he learned
about during the initial exchange of profile information) toretrieve
her social data, without having to contact Alice directly. Alice is
free to update her access policies at any time, or unfriend Bob en-
tirely by deleting his authorization token from her ACLs.

Because all commoditized services use standardized APIs for
identity verification and authorization, users are able to access data
hosted on their friend’s services, even if they do not have anaccount

Google Buzz

Foursquare
@@

2. Updates Propagate

Across Services1. Update ACLs

Figure 4: Service composition. (1) Alice updates her ACLs to give
Foursquare write access to Buzz. (2) Updates to Foursquare can now
be forwarded to Buzz.

there. Friends also cache each other’s profile data, which mitigates
the impact of mobile devices being unavailable. Users push profile
change notifications directly to friends in order to maintain consis-
tency. The privacy of browsers is protected, since users cannot tell
when data cached on other’s devices or hosted by third parties is
accessed.

Finding a technological solution to ensure that commoditized
services faithfully honor user’s ACLs is an extremely difficult chal-
lenge. Instead, we believe that a social solution to this problem
is more practical. In the event that a commoditized service fails
to uphold users’ privacy policies, users can simply abandonthat
service and move to a more secure competitor. Users do not have
this freedom with current OSNs because their friend links are not
portable to other providers. However, in Polaris this migration is
made simple by the fact that the APIs commoditized services must
implement include functions that enable data and friend portability.
Thus, it is in each service’s best interest not to violate user’s pri-
vacy, as such a breach is sure to be well publicized (probablyvia
social news-media) and will certainly cause a user exodus.

Service Composition. In many cases, it is useful for commodi-
tized services to be able to interact directly, without userinterven-
tion. We refer to this asservice composition, and Polaris supports
this functionality. Figure 4 illustrates the process of composing
commoditized services. Suppose Alice uses a geolocation service
like Foursquare that is capable of publishing location updates to
her status. If Alice wants to use this feature, she can modifyher
ACLs to give Foursquare write access to Buzz on her behalf, using
a new access token. At this point Foursquare can publish updates
directly to Alice’s status on Buzz without contacting her mobile
device. Note that Alice’s personal authorization token to Buzz and
the token generated for Foursquare are distinct: Alice can revoke
Foursquare’s access to Buzz at any time by deleting its tokenand
pushing the change to Buzz.

4. TOWARDS A FEDERATED OSN
Thus far we have outlined the basic architecture of Polaris,fo-

cusing on how we lay the foundations for an economically viable
distributed OSN that leverages commoditized OSN services.In
this section we will examine how to use the basic, primitive opera-
tions enabled by Polaris to construct higher level functionality that
is necessary for a modern, full-featured OSN.

Search. A key function of OSNs is search, as this is how users
locate their friends. In the absence of centralization it isnot clear
how to replicate this functionality in a distributed OSN scenario.
Our solution is to treat search as another federated service, along-
side standard services like status update and photo hosting. Polaris
users can register themselves with any centralized search directo-
ries that they choose, along with some portion of their personal
information to enable keyword search. Canonical identifiers like
users’ OpenIDs and phone numbers are used to bootstrap commu-
nications between devices.

In this model, there is ample opportunity for search services to
differentiate themselves. Just as Facebook used to be divided into
networks, search services can cater to specific regions, companies,
schools, cultures,etc. Search services can also implement addi-
tional security features, such as requiring users to verifytheir af-
filiations by providing corporate/edu e-mail addresses, orverifying
users region by checking the area code of their phone number or
their GPS coordinates. In this way, a whole ecosystem of search
services can flourish, each catering to different segments of the
population and offering varying levels of security.

Incremental Deployment. After the initial deployment of Po-
laris, there will be a transition period during which early adopters
migrate, while their friends remain at existing OSNs. Without any
mechanism to support incremental deployment, Polaris users will
be disconnected from friends on other OSNs, which is a signifi-
cant barrier to Polaris’ adoption. Fortunately, most existing OSNs
have APIs that allow data to be read and written by external apps.
The Polaris client can forward updates to, and read updates from,
friends on legacy OSNs using these APIs. Because Polaris only
leverages official API channels, it is unlikely to run afoul of system
administrators at existing OSNs.

Real-time Communication. Polaris leverages a publish/sub-
scribe model to enable push-based, real-time data communications.
Commoditized services that are expected to publish updatesare al-
lowed to view users’ friend lists, thus making it simple to perform
routing of data. Each user’s mobile device pushes her accesscon-
trol lists to the user’s service providers. This allows Polaris to sup-
port fine-grained control over dissemination of updates, enforcing
the data access rules the user has defined. Finally, Polaris supports
both forward-direction messages (e.g. new updates) and reverse-
direction ones (e.g. comments, mentions, and likes).

Social Applications. Polaris’ focus on leveraging open APIs
means that third-party social applications should have no trouble
interfacing with users and their devices. The same mechanisms
that Polaris uses to identify other users and authorize commodi-
tized services can be used to secure interactions with social appli-
cations. With respect to user’s privacy, Polaris actually simplifies
the process of using social applications. Social applications can be
thought of as a special case of the normal friending process:users
can assign data access control policies to applications thesame way
they can to their friends. Additionally, because users havecomplete
control of their identity in Polaris, they cannot get opted-in to social
applications without their knowledge or consent.

5. A POLARIS PROTOTYPE
We have implemented a prototype of Polaris as a standard “App”

on the Android smartphone platform. Android is a rapidly growing,
open-source platform for smartphones with 28% of the smartphone
market in the USA [9]. The Android Marketplace allows users to
download and install over 90,000 applications [1]. Androidappli-
cations are Java based and run on a modified Linux core. Appli-
cations have access to both core Java libraries and Google libraries
for phone specific functions.

Our Polaris prototype uses an SQLite database to store all ofthe
user’s information, including profile fields, friend lists,ACLs, and
settings related to the user’s service providers. Access toservices
is provided by Polaris plug-ins. Our current prototype has plug-ins
supporting Twitter, Google Buzz, and Youtube, as well as imple-
mentations of our custom, Polaris-only APIs.

Global Reachability. As mentioned in Section 1, current gen-
eration mobile devices on cellular networks reside behind afire-

wall that blocks incoming connections initiated from Internet hosts.
This means services running on mobile devices must find alternate
means to accept incoming requests. Our Polaris prototype can re-
ceive incoming requests over two communications channels.The
first channel is Android specific: it uses Google push notifications
as a proxy to relay messages to the Polaris application running on
a mobile device. If necessary, messages relayed in this manner can
instruct Polaris to send outgoing HTTP GET requests for additional
content associated with the message.

A second, more general solution is to use SMS messaging as the
communication backbone. The Polaris prototype registers aSMS
broadcast receiver with the Android OS, which triggers whenSMS
messages with a specified prefix arrive. Polaris SMS messagescon-
tain an action followed by a sequence of parameters. One exam-
ple usage of this channel is requesting and accepting new friends.
Polaris notifies the user of incoming friend requests via Android’s
Status Bar notification system, at which point the user can accept
or deny the request. One SMS message is required for sending a
friend request, and one is required for the reply.

Portability. Our prototype’s dependence on Android is specific
to this implementation and not fundamental. Since many messages
are asynchronous and do not require real-time responses, wecan
envision replacing them with a web-based polling system. Alterna-
tively, users can bootstrap communications by tunneling through a
free messaging service such as Gtalk or Skype.

The primary obstacle limiting Polaris’ portability is the openness
of other mobile OS platforms. While all of the major smartphone
platforms include push-notification APIs, not all allow third-party
applications access to the SMS inbox (iOS being the prime exam-
ple). As other new mobile platforms emerge (Windows Phone 7,
ChromeOS) we will evaluate them for suitability as target platforms
for Polaris.

6. LIMITATIONS AND ONGOING WORK
This paper describes first steps in realizing the Polaris OSN.

While we have addressed some of the core technical challenges,
several key issues remain the subject of our ongoing work. We
summarize them here and outline plans to address them.

Energy Consumption. Energy Consumption is a key concern
for all mobile applications. Intuitively, using Polaris ona smart-
phone is similar in energy usage to using a Facebook reader. Polaris
will send and receive additional control messages for modifying ac-
cess control lists and friendship links. We are currently preparing
for a detailed trace-based event-driven energy consumption study
of Polaris components and protocols.

Security and Auditing. From a security perspective, a dis-
tributed OSN architecture significantly increases the attack surface
and the difficulty of detecting and defending against attacks. As
ongoing work, Polaris requires a detailed security analysis as well
as design of carefully placed auditing mechanisms in the system.

Availability and Scalability. Polaris strives to maximize data
availability by caching profiles and hosting social data on com-
moditized services. Additional trace-based experiments will be
used to demonstrate the feasibility of our approach to maintain-
ing high-availability. Furthermore, these experiments will examine
potential scalability challenges in Polaris, such as heavy-hitter op-
erations like aggregating news-feeds from distributed sources.

Device Migration. The existing Polaris prototype assumes
that users only have a single, persistent mobile device. Future ex-
tensions will accommodate multiple devices per person, as well as
facilitate migrating Polaris accounts between devices in the event

that they are replaced, broken, or stolen. These features can be
implemented by expanding the role of the proxy service to store
encrypted account backups and support multiple devices peruser.

Incentivizing Providers. Besides migrating users away from
centralized OSNs, successful adoption of Polaris also requires fos-
tering the growth of multiple providers in each applicationdomain.
Market forces already create tension between central OSNs like
Facebook and competing service providers like Zynga games.We
will encourage and simplify the move away from central OSNs by
releasing open-source implementations of Polaris APIs in several
languages used by web applications.

Application Limitations. Applications that require visibility
into significant portions of the social graph do not work wellin
distributed OSNs like Polaris. While the lack of a central provider
might eliminate the need for graph-wide analysis tools, this is still
a limitation of the architecture.

7. REFERENCES
[1] A NDROL IB. Android market statistics, July 2010.

http://www.androlib.com/appstats.aspx.
[2] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE,

B., AND STARIN , D. Persona: An online social network
with user-defined privacy. InProc. of SIGCOMM (2009).

[3] BLAKE , C., AND RODRIGUES, R. High availability,
scalable storage, dynamic peer networks: Pick two. InProc.
of HotOS (2003).

[4] BUCHEGGER, S., SCHIÖBERG, D., VU, L.-H., AND

DATTA , A. Peerson: P2p social networking: early
experiences and insights. InProc. of SNS (2009).

[5] CARLSON, N. Debunked: Why you’ll never have to pay for
facebook. CNN.com, June 2010.

[6] COOK, B., MESSINA, C., RECORDON, D., AND HALFF, L.
Oauth, 2010.http://oauth.net/.

[7] CUTILLO , L. A., MOLVA , R., AND STRUFE, T. Safebook:
Feasibility of transitive cooperation for privacy on a
decentralized social network. InProc. of IEEE WoWMoM
AOC (2009).

[8] FITZPATRICK, B. Openid. OpenID Foundation, 2010.
http://openid.net/.

[9] K AFKA , P. Is android really outselling apple?, May 2010.
[10] NIELSEN. Smartphone penetration over 50% in 2011, 2010.

http://www.gpsbusinessnews.com.
[11] PRODROMOU, E., VIBBER, B., WALKER , J.,AND

COPLEY, Z. Ostatus, 2010.http://ostatus.org/.
[12] SHAKIMOV , A., L IM , H., CÃĄCERES, R., COX, L. P., LI ,

K., L IU , D., AND VARSHAVSKY, A. Vis-à-Vis:
Privacy-Preserving Online Social Networking via Virtual
Individual Servers. InProc. of COMSNETS (2011).

[13] STUEDI, P., MOHOMED, I., BALAKRISHNAN , M.,
RAMASUBRAMANIAN , V., WOBBER, T., TERRY, D., AND

MAO, Z. M. Contrail: Enabling decentralized social
networks on smartphones. Tech. Rep. MSR-TR-2010-132,
Microsoft Research, 2010.

[14] TOOTOONCHIAN, A., SAROIU, S., GANJALI , Y., AND

WOLMAN , A. Lockr: Better privacy for social networks. In
Proc. of CoNEXT (2009).

