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Summary

New Threat: Malicious Crowdsourcing = Crowdturfing
  
  + Hire a large group of real Internet users for malicious attacks
  + Fake reviews, rumors, targerted spam
  + Most existing defenses failed against real users (e.g., CAPTCHA)

Research Questions
  
  + How does crowdturfing work? [1]

  + What’s the scale, economics and impact of crowturfing campaigns? [1] 
  + How to defend against crowdturfing? [2] 

Crowdturfing Sites
  
  + Web services that recruit Internet users as workers (spam for $)
  + Connect workers to customers who want to run malicious campaigns 

Key Players
  + Customers: pay to run a campaign
  + Workers: real users, spam for $
  + Target Networks: social networks, revew sites

Scale and Revenue
  
  + Measurements of two largest crowdturfing sites (in China) 
     - ZBJ (zhubajie.com), five years
     - SDH (sandaha.com), two yeras
  + 18.5M tasks, 79K campaigns, 180K workers
  + Millions dollars of revenue per month

Crowdturfing around the World

ZBJ, SDH Fiverr, Freelancer, MinuteWorkers, Myeasytasks, Microworkers, Shorttasks Paisalive

Machine Learning (ML) vs. Crowdturfing
+ Simple method does not work on real users (e.g., CAPTCHA, rate limit)
+ Machine learning: more sophiscaed modeling on user behaviors
+ Perfect context to study adversarial machine learning
   - Human workers are adaptive to evade classifiers
   - Crowdturf admins can temper with training data by chaning worker behaviors

How Effective is ML-based Detecor?
+ Groundtruth: 28K workers in crowdturfing campaigns on Weibo (Chinenes Twitter)
+ Baseline users: 371K Weibo user accounts
+ 30 behavioral features
+ Classiiers: Random Forest, Decision Tree, SVM, Naive Bayes, Bayesian Network
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  + Random Forest is the most accurate (95% accuracy)
  + 99% accuracy on professional workers (>100 tasks)
  + How robust are those classifiers?

Classifier

Training Data

Training
e.g. SVM

Poisning Attack

Evasion Attack

+ Evasion attack: individual workers change behaviors 
   to evade the detection 
   - Impact: single feature-change saves 95% of workers

+ Poisoning attack: site admins tamper with training data 
   to mislead classifier training

+ Machine learning classifiers are effective against current crowd-workers
+ Classifiers are highly vulnerable to adversarial attacks. Future works will focus on improving the 
   robustiness of ML-classifiers

Example: Poisoning Attack
+ Inject mislabeled samples to training data     wrong classifier
   e.g., inject benign accounts as “workers” in training data  
+ Uniformly change workers behavior by enforcing task policies 
       hard to train an accurate classifier
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