463.15 Code Stylometry

Computer Security II
CS463/ECE424
University of Illinois
Facebook is backing away from facial recognition. Meta isn’t.

The social network is scaling back facial recognition, but similar technology could show up in the metaverse.

By Rebecca Heilweil | Nov 3, 2021, 2:20pm EDT

Facebook says it will stop using facial recognition for photo-tagging. In a Monday blog post, Meta, the social network’s new parent company, announced that the platform will delete the facial templates of more than a billion people and shut off its facial recognition software,

Several of Meta’s current projects show that the company has no plans to stop collecting data about peoples’ bodies. Meta is developing hyper-realistic avatars that people will operate as they travel through the metaverse, which requires tracking someone’s facial movements in real time so they can be recreated by their avatar. A new virtual reality headset that Meta
Stylometry and authorship attribution background

Code stylometry methods
- Source code stylometry
- Executable binary stylometry
Motivating Examples

• There has been debate over who wrote:
 – Shakespeare’s works
 – Bible passages
 – The Federalist Papers
Motivating Examples

- Linguistic work was pivotal in capture of Unabomber (Ted Kaczynsk)
- The Unabomber’s Manifesto
Authorship Attribution

- Authorship attribution aims to infer the identity of an author of a document by examining it.

- **Stylometry**: inferring properties of the author by examination
 - This idea is over a century old
 - Stylome/fingerprint: differences in how individuals write
Linguistic Stylometry

• Use different features of written text to fingerprint authors
 – Vocabulary
 – Average word length
 – Frequency of specific words
 – Many others

• Machine learning is generally used to classify works based on these features
Examples of Linguistic Stylometry

- [Narayanan12] used stylometry to identify anonymous bloggers in large datasets
 - This is a privacy issue

- Adversarial stylometry [Brennan12]
 - Authorship attribution based on linguistics can be evaded
 - Defenses:
 - Obfuscate writing style
 - Imitate someone else’s writing style
Code Stylometry

• We want to determine who wrote some code
• Goal: programmer de-anonymization
• Can you think of reasons why we would want to determine code authorship?
Code Stylometry

• We want to determine who wrote some code
• Goal: programmer de-anonymization
• Can you think of reasons why we would want to determine code authorship?
 – Company wants to determine which employee wrote harmful code
 – Government wants to determine who is engaging in cyber warfare
 – A professor wants to determine if students are plagiarizing assignments
 – Identify Satoshi Nakomoto
 – Identify cyber criminals
 – Determine source of malware
 – Reveal creators of anti-censorship tools
Types of Code Stylometry

• Source code stylometry
• Executable binary stylometry
• Malware attribution
Source Code Stylometry

• We can study source code for authorship attribution
• Examples of features used for source code stylometry:
 – Simple byte-level and word-level n-grams
 – Abstract syntax trees
 – Lexical markers such as line length
 – Layout

• Techniques usually include classification by ML
Executable Binary Stylometry

- We want to study executable binaries for authorship attribution
- Binaries are typically produced by compiling or assembling source code
- Goal: perform stylometry on executable binaries
Executable Binary Stylometry

• Harder than source code stylometry
• During compilation,
 – Variable names, function names, and other symbols and metadata about the source code can be removed
 – The structure of the code can be changed through optimization
• This removes information that may suggest authorship
What information can we use about binary code to reveal authorship information?

- Use tools to parse executable binaries
- Reconstruct instruction sequences and control flow graphs
- Use this information as features to determine a code author’s stylometric fingerprint
When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries

• Goal: executable binary stylometry using automatic tools

• Main idea:
 – Use machine learning to classify sample executable binaries from a set of known authors
 – Determine a good set of features for executable binary stylometry
Attack Model

- Consider an analyst interested in determining the author of an executable binary purely based on its style (not content)
- Assume that the analyst only has access to executable binary samples each assigned to one of a set of candidate programmers
- The analyst:
 - Obtains labeled executable binaries from each candidate programmer (training set)
 - Converts each labeled sample into numerical feature vector, using low-level features from disassemblers and decompilers
 - Derives a classifier from these vectors using machine learning
 - Uses this classifier to attribute the anonymous executable binary (test set) to the most likely programmer
Background: Disassemblers and Decompilers

- **Disassemblers**
 - Programs that translate executable binary code into assembly code
 - The inverse of an assembler

- ** Decompilers**
 - Programs that translate executable binary into high level source code
 - The inverse of a compiler

- These tools do not perfectly reconstruct the original source or assembly code
Background: Control Flow Graphs

- A control flow graph is a graph of all paths that might be traversed through a program during execution.

- Each node represents a basic block in the code.
 - A basic block is a piece of code with no jumps.

- Directed edges represent jumps in the control flow.
Background: Abstract Syntax Trees

- Tree representation of the abstract syntactic structure of source code written in a programming language
 - A structure containing only the meaning of a program, but no language details (ex. semicolons, spaces, formatting)
- Each node of the tree denotes a construct that occurs in the source code
- These trees abstract away certain parts of the high-level language such as: parentheses, if statements, etc
Background: AST examples

Abstract syntax tree (AST)

```
  func
   decl
     int =
       v0 call
         f0
       v0
     pred stmt
       < ...
```

Syntactic features

AST unigrams:

```
  func decl if int
  = pred stmt ...
```

AST bigrams:

```
  func func decl ...
  decl if int
```

AST depth: 5
Background: CFG examples

Control-flow graph (CFG)

Control-flow features

CFG unigrams:

```
blk1  blk2  blk3
blk4
```

CFG bigrams:

```
blk1  blk1
blk2  blk3
```

(entry, blk1, blk2, blk3, blk4, exit)
When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries, Continued

- Executable Binary Stylometry [Caliskan18]
- Extract features of executable binary code for stylometry:
 - Use automated decompilation of binaries
 - Generate abstract syntax trees of decompiled source code
 - Use multiple tools for disassembly and decompilation in parallel

- ML framework
 - Feature reduction
 - Predict code authorship using a random forest classifier
[Caliskan18] Overview
Stylistic Features

• Representations of the program from binary code
 – Disassembler
 o Obtain low level features in assembly code
 o Based on machine code instructions, referenced strings, symbol information, etc.
 – Decompiler
 o Translate the program into C-like pseudo code
 o Pass this code to a fuzzy parser for C
 o Generate control flow graph to capture the flow of the program
 o Convert the low-level instructions to high level decompiled source code in order to obtain abstract syntax trees

• Use these three data formats to numerically represent the stylistic properties embedded in binary code
Dimensionality Reduction

• Analyst determines the set of stylistic features through dimensionality reduction

• Two steps of feature selection:
 – Information gain based dimensionality reduction
 – Correlation based feature selection

• Select features particularly useful for classification
• 53 features are identified to represent programmer style
 – Out of 705,000 representations of code properties
Machine Learning Task

- Closed world problem
 - The set of potential code authors is known
- Supervised learning task
 - The training data is labeled
- Multi-class problem
 - Classifier calculates the most likely author for the anonymous executable binary sample among multiple code authors
Experimental Setup

- [Caliskan18] performs experiments with data from the Google Code Jam
 - GCJ is an annual programming competition
 - Contestants implement solutions for the **same tasks**
- Focused on C++ code
- Compiled with gcc or g++
 - Experimented with no optimizations, and optimization levels-1,2,3
Results

<table>
<thead>
<tr>
<th>Related Work</th>
<th>Number of Programmers</th>
<th>Number of Training Samples</th>
<th>Accuracy</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenblum [39]</td>
<td>20</td>
<td>8-16</td>
<td>77%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>20</td>
<td>8</td>
<td>90%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>20</td>
<td>8</td>
<td>99%</td>
<td>RF</td>
</tr>
<tr>
<td>Rosenblum [39]</td>
<td>100</td>
<td>8-16</td>
<td>61%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>100</td>
<td>8</td>
<td>84%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>100</td>
<td>8</td>
<td>96%</td>
<td>RF</td>
</tr>
<tr>
<td>Rosenblum [39]</td>
<td>191</td>
<td>8-16</td>
<td>51%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>191</td>
<td>8</td>
<td>81%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>191</td>
<td>8</td>
<td>92%</td>
<td>RF</td>
</tr>
<tr>
<td>This work</td>
<td>600</td>
<td>8</td>
<td>71%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>600</td>
<td>8</td>
<td>83%</td>
<td>RF</td>
</tr>
</tbody>
</table>

TABLE II: Comparison to Previous Results
Results

Fig. 5: Large Scale Programmer De-anonymization
Findings

• Even a single training sample per programmer is sufficient for de-anonymization
• Accuracy can be improved by finding the top-n most likely authors
• This work can de-anonymize 600 programmers from their executable binaries
• Removing symbol information does not anonymize binaries
• Programmers can be de-anonymized from obfuscated binaries*

*This experiment is quite brief, not very conclusive
Practical Implications of this Work

• Coding style survives compilation!

• Why?
 – Decompiled source code is not necessarily similar to the original source code in terms of the features used in this work
 – The feature vector obtained from disassembly and decompilation can be used to predict the features in the original source code

• More skilled programmers are more fingerprintable
 – Programmers gradually acquire their own unique style as they gain experience
References

Discussion

• Can you think of some countermeasures that might be possible to preserve privacy against code stylometry analysis?

• What are the pros and cons of authorship attribution?
 – Natural language
 – Code