463.15 Code Stylometry

Computer Security II
CS463/ECE424
University of Illinois
533 million Facebook users' phone numbers and personal data have been leaked online

6 million on users in India. It includes their phone numbers, Facebook IDs, full names, locations, birthdates, bios, and, in some cases, email addresses.

scraped because of a vulnerability that the company patched in 2019.

Now the data set has been posted on the hacking forum for free,
Stylometry and authorship attribution background

Code stylometry methods
- Source code stylometry
- Executable binary stylometry
Motivating Examples

• There has been debate over who wrote:
 – Shakespeare’s works
 – Bible passages
 – The Federalist Papers
Motivating Examples

- Linguistic work was pivotal in capture of unabomber
- The Unabomber’s Manifesto
Authorship Attribution

• Authorship attribution aims to infer the identity of an author of a document by examining it

• **Stylometry**: inferring properties of the author by examination
 – This idea is over a century old
 – Stylome/fingerprint: differences in how individuals write
Linguistic Stylometry

• Use different features of written text to fingerprint authors
 – Vocabulary
 – Average word length
 – Frequency of specific words
 – Many others

• Machine learning is generally used to classify works based on these features
Examples of Linguistic Stylometry

• [Narayanan12] used stylometry to identify anonymous bloggers in large datasets
 – This is a privacy issue

• Adversarial stylometry [Brennan12]
 – Authorship attribution based on linguistics can be evaded
 – Defenses:
 o Obfuscate writing style
 o Imitate someone else’s writing style
Code Stylometry

- We want to determine who wrote some code
- Goal: programmer de-anonymization
- Can you think of reasons why we would want to determine code authorship?
Code Stylometry

• We want to determine who wrote some code
• Goal: programmer de-anonymization
• Can you think of reasons why we would want to determine code authorship?
 – Company wants to determine which employee wrote harmful code
 – Government wants to determine who is engaging in cyber warfare
 – A professor wants to determine if students are plagiarizing assignments
 – Identify Satoshi Nakomoto
 – Identify cyber criminals
 – Determine source of malware
 – Reveal creators of anti-censorship tools
Types of Code Stylometry

- Source code stylometry
- Executable binary stylometry
- Malware attribution
Source Code Stylometry

• We can study source code for authorship attribution
• Examples of features used for source code stylometry:
 – Simple byte-level and word-level n-grams
 – Abstract syntax trees
 – Lexical markers such as line length
 – Layout

• Techniques usually include classification by ML
Executable Binary Stylometry

- We want to study executable binaries for authorship attribution
- Binaries are typically produced by compiling or assembling source code
- Goal: perform stylometry on executable binaries
Executable Binary Stylometry

• Harder than source code stylometry
• During compilation,
 – Variable names, function names, and other symbols and metadata about the source code can be removed
 – The structure of the code can be changed through optimization
• This removes information that may suggest authorship
Executable Binary Stylometry

• What information can we use about binary code to reveal authorship information?
 – Use tools to parse executable binaries
 – Reconstruct instruction sequences and control flow graphs
 – Use this information as features to determine a code author’s stylometric fingerprint
When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries

- Goal: executable binary stylometry using automatic tools

- Main idea:
 - Use **machine learning** to classify sample executable binaries from a set of known authors
 - Determine a good set of features for executable binary stylometry
Attack Model

- Consider an analyst interested in determining the author of an executable binary purely based on its style (not content)
- Assume that the analyst only has access to executable binary samples each assigned to one of a set of candidate programmers
- The analyst:
 - Obtains labeled executable binaries from each candidate programmer (training set)
 - Converts each labeled sample into numerical feature vector, using low-level features from disassemblers and decompilers
 - Derives a classifier from these vectors using machine learning
 - Uses this classifier to attribute the anonymous executable binary (test set) to the most likely programmer
Background: Disassemblers and Decompilers

- **Disassemblers**
 - Programs that translate executable binary code into assembly code
 - The inverse of an assembler

- **Decompilers**
 - Programs that translate executable binary into high level source code
 - The inverse of a compiler

- These tools do not perfectly reconstruct the original source or assembly code
Background: Control Flow Graphs

- A **control flow graph** is a graph of all paths that might be traversed through a program during execution.

- Each **node** represents a basic block in the code.
 - A basic block is a piece of code with no jumps.

- **Directed edges** represent jumps in the control flow.
Background: Abstract Syntax Trees

- Tree representation of the abstract syntactic structure of source code written in a programming language
 - A structure containing only the meaning of a program, but no language details (ex. semicolons, spaces, formatting)
- Each node of the tree denotes a construct that occurs in the source code
- These trees abstract away certain parts of the high-level language such as: parentheses, if statements, etc
Background: AST examples

Abstract syntax tree (AST)

```
func
  decl
    int =
      v0 call
        f0
      v0
    pred
      <
        ...
  if
    pred
      =
        pred
      stmt
    ...
```

Syntactic features

- **AST unigrams:**
 - `func`
 - `decl`
 - `if`
 - `int`
 - `=`
 - `pred`
 - `stmt`
 - `...`

- **AST bigrams:**
 - `func func decl`
 - `decl if int`
 - `...`

AST depth: 5
Background: CFG examples

Control-flow graph (CFG)

entry

blk1

blk2

blk3

blk4

exit

Control-flow features

CFG unigrams:

blk1 blk2 blk3

blk4 ...

CFG bigrams:

blk1 blk1

blk2 blk3

...

When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries, Continued

- Executable Binary Stylometry [Caliskan18]
- Extract features of executable binary code for stylometry:
 - Use automated decompilation of binaries
 - Generate abstract syntax trees of decompiled source code
 - Use multiple tools for disassembly and decompilation in parallel

- ML framework
 - Feature reduction
 - Predict code authorship using a random forest classifier
Overview
Stylistic Features

• Representations of the program from binary code
 – Disassembler
 o Obtain low level features in assembly code
 o Based on machine code instructions, referenced strings, symbol information, etc.
 – Decompiler
 o Translate the program into C-like pseudo code
 o Pass this code to a fuzzy parser for C
 o Generate control flow graph to capture the flow of the program
 o Convert the low-level instructions to high level decompiled source code in order to obtain abstract syntax trees

• Use these three data formats to numerically represent the stylistic properties embedded in binary code
Dimensionality Reduction

- Analyst determines the set of stylistic features through dimensionality reduction

- Two steps of feature selection:
 - Information gain based dimensionality reduction
 - Correlation based feature selection

- Select features particularly useful for classification

- 53 features are identified to represent programmer style
 - Out of 705,000 representations of code properties
Machine Learning Task

• **Closed world problem**
 – The set of potential code authors is known

• **Supervised learning task**
 – The training data is labeled

• **Multi-class problem**
 – Classifier calculates the most likely author for the anonymous executable binary sample among multiple code authors
Experimental Setup

- [Caliskan18] performs experiments with data from the Google Code Jam
 - GCJ is an annual programming competition
 - Contestants implement solutions for the same tasks
- Focused on C++ code
- Compiled with gcc or g++
 - Experimented with no optimizations, and optimization levels-1,2,3
Results

<table>
<thead>
<tr>
<th>Related Work</th>
<th>Number of Programmers</th>
<th>Number of Training Samples</th>
<th>Accuracy</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenblum [39]</td>
<td>20</td>
<td>8-16</td>
<td>77%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>20</td>
<td>8</td>
<td>90%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>20</td>
<td>8</td>
<td>99%</td>
<td>RF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Work</th>
<th>Number of Programmers</th>
<th>Number of Training Samples</th>
<th>Accuracy</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenblum [39]</td>
<td>100</td>
<td>8-16</td>
<td>61%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>100</td>
<td>8</td>
<td>84%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>100</td>
<td>8</td>
<td>96%</td>
<td>RF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Work</th>
<th>Number of Programmers</th>
<th>Number of Training Samples</th>
<th>Accuracy</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenblum [39]</td>
<td>191</td>
<td>8-16</td>
<td>51%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>191</td>
<td>8</td>
<td>81%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>191</td>
<td>8</td>
<td>92%</td>
<td>RF</td>
</tr>
<tr>
<td>This work</td>
<td>600</td>
<td>8</td>
<td>71%</td>
<td>SVM</td>
</tr>
<tr>
<td>This work</td>
<td>600</td>
<td>8</td>
<td>83%</td>
<td>RF</td>
</tr>
</tbody>
</table>

TABLE II: Comparison to Previous Results
Results

Fig. 5: Large Scale Programmer De-anonymization
Findings

- Even a single training sample per programmer is sufficient for de-anonymization.
- Accuracy can be improved by finding the top-n most likely authors.
- This work can de-anonymize 600 programmers from their executable binaries.
- Removing symbol information does not anonymize binaries.
- Programmers can be de-anonymized from obfuscated binaries.*

*This experiment is quite brief, not very conclusive.
Practical Implications of this Work

• Coding style survives compilation!
• Why?
 – Decompiled source code is not necessarily similar to the original source code in terms of the features used in this work
 – The feature vector obtained from disassembly and decompilation can be used to predict the features in the original source code
• More skilled programmers are more fingerprintable
 – Programmers gradually acquire their own unique style as they gain experience
References

Discussion

• Can you think of some countermeasures that might be possible to preserve privacy against code stylometry analysis?

• What are the pros and cons of authorship attribution?
 – Natural language
 – Code