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Abstract

Generative adversarial networks (GANs) have been used
to create remarkably realistic images of people. More re-
cently, diffusion-based techniques have taken image synthe-
sis to the next level. From only a text prompt, these tech-
niques can synthesize any image seemingly limited only by
our imagination. Along with the many clever and creative
use cases, synthetically-generated faces are being used to
create more convincing fake social-media profiles. We de-
scribe two related techniques that learn low-dimensional
(128-D) embeddings of GAN-generated faces. We show that
these embeddings capture common facial structures found
in these synthetically-generated faces that are uncommon in
real profile photos. These low-dimensional models, trained
on a relatively small data set, achieve higher classification
performance than larger and more complex state-of-the-art
classifiers.

1. Introduction

From online dating sites to social media and professional
networks, fake profiles, scams, and hoaxes are nothing new.
Between January and June of 2019, for example, LinkedIn–
at the time, home to more than 645 million members–took
action on 21.6 million fake accounts [25]. And, during the
first quarter of 2019, Facebook removed 2.2 billion fake
profiles1.

With the rise of GAN-generated synthetic media [14–16]
and more recently, text-to-image generated media [1, 23,
24], fake profiles have grown more sophisticated and plen-
tiful. At the same time, the typical user is generally unable
to visually distinguish real from synthetically-generated
faces [12, 20, 22], and future iterations of synthetic media
are likely to contain fewer obvious artifacts.

The task of automatically detecting synthetically-
generated profile photos is difficult for several reasons: (1)

1https://www.statista.com/statistics/1013474/
facebook-fake-account-removal-quarter
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Figure 1. Shown in (a) is the average of 400 StyleGAN2 faces
(left) and 400 real profile photos (right), revealing a highly regular
synthetic image structure as compared to a highly diverse profile-
photo structure. As shown in Figure 2, the StyleGAN2 photos used
to create this averaged image were drawn from a diverse demo-
graphic pool. Shown in (b) are the average image reconstruction
errors (displayed on the same intensity scale) from a learned linear
embedding of 10,000 StyleGAN2 faces; this embedding captures
the underlying structure of synthetic faces but not profile photos,
as seen by the smaller reconstruction error for synthetic faces.

major online platforms are massive: LinkedIn has more
than 900 million members2, with Instagram and Facebook
clocking in at 1.2 billion and 3 billion users; (2) there is
a significant class imbalance in the prevalence of synthetic
and real profile photos, meaning that classifiers with even
small error rates of misclassifying real photos as synthetic
can be prohibitive when deployed on a major network; (3)
the nature of synthetic media is quickly evolving: the past

2https://about.linkedin.com
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few years has seen three iterations of increasingly more re-
alistic StyleGAN faces, followed by the most recent text-
to-image synthesis; and (4) this is an inherently adversarial
system, with the adversary constantly and quickly adapt-
ing to new defenses. It is, nevertheless, important that the
forensic community develop reliable techniques to distin-
guish real from synthetic faces that can operate on large
networks with hundreds of millions of daily users.

Broadly speaking, there are two categories of foren-
sic approaches to this problem [7]. Hypothesis-driven
approaches identify specific artifacts in synthetically-
generated faces. For example, inconsistencies in bilat-
eral facial symmetry in the form of corneal reflections and
pupil shape have been observed in synthetically-generated
faces [10, 11]. Relatedly, head pose and the spatial layout
of facial features (eyes, tip of nose, corners of mouth, chin,
etc.) in synthetically-generated faces have been observed
to be distinct from real faces [30, 31], particularly in earlier
incarnations of StyleGAN [15]. The benefit of these ap-
proaches is that they learn explicit, semantic-level anoma-
lies. The drawback is that synthesis engines appear to be
able to incorporate these features, learning, for example,
how to respect bilateral facial symmetry.

Other artifacts include spatial frequency or noise anoma-
lies [3, 9, 21, 33], but these artifacts tend to be vulnerable
to simple laundering attacks (e.g., trans-coding and down-
sampling).

In the second, data-driven category, machine learning is
used to learn how to distinguish real from synthetically-
generated faces. It has been common for a trained sys-
tem to accurately classify images from its training set, but
then struggle with out-of-domain images. Recently, how-
ever, trained systems have shown impressive generalizabil-
ity across a broad class of synthetic images not included
in the training [8, 29]. This generalization appears to be
the result of the system learning artifacts introduced as im-
ages are resized throughout the image-synthesis pipeline.
This strength, however, can also be a weakness because the
generic artifacts can also be intentionally or unintention-
ally removed, rendering these systems useless [5]. Neural-
network based approaches are also vulnerable to adversarial
attacks where an image is imperceptibly perturbed allow-
ing real images to be easily classified as synthetic and vice
versa [2]. The advantage of these techniques, however, is
that they can uncover subtle and non-obvious artifacts.

Our approach is a hybrid in which we identify a specific
and distinct geometric property in synthetically-generated
faces and then use data-driven approaches to quantify and
detect these properties. This approach requires training on
only a relatively small number of synthesized faces and em-
ploys a light-weight classifier that is easy and fast to train.

Shown in the left panel of Figure 1(a) is the average of
400 synthetically-generated (StyleGAN2) faces; shown in

the right panel is the average of 400 real (publicly accessi-
ble) LinkedIn profile photos. Because the real photos are
so varied, the average profile photo is fairly nondescript. In
contrast, the average StyleGAN face is highly distinct with
almost perfectly focused eyes. This is because StyleGAN
faces are aligned in terms of ocular position and interoc-
ular distance. In addition to the facial alignment, we also
note that StyleGAN faces are primarily synthesized from
the neck up, whereas real profile photos tend to show more
of the upper body and shoulders. It is this within-class sim-
ilarity and across-class differences that we seek to exploit.

We describe two related approaches that learn com-
pact embeddings of StyleGAN-generated faces that cap-
ture the structural differences illustrated in Figure 1. We
then show how these embeddings can be used to distinguish
synthetically-generated from real profile photos.

The prior work most related to ours is [17], where the
authors use a one-class variational autoencoder (VAE) [18]
and a baseline one-class autoencoder [19] to detect deep-
fake face swaps from the FaceForensics++ dataset [27]. The
most significant difference to our work is that we focus
on fully synthetic faces (e.g., StyleGAN), while this prior
work targets face-swap deepfakes. Second, although we
achieve similar overall classification performance, we em-
ploy a much simpler and easier to train classifier on a rela-
tively small set of synthetic images.

2. Data Sets
We utilize six data sets consisting of 100,000 real

LinkedIn profile photos, and 41,500 synthetically-generated
faces spanning five different synthesis engines.

The 100,000 real profile photos were sampled from
LinkedIn members with publicly-accessible profile photos
uploaded between Jan 1, 2019 and Dec 1, 2022. The ac-
counts used showed activity on the platform on at least
30 days (e.g., signed in, posted, messaged, searched, etc.),
without triggering any fake-account detectors.

A total of 10,000 images from each StyleGAN version
(1,2,3) [14–16] were downloaded or synthesized. For the
first two StyleGAN versions, images were randomly sam-
pled from the larger 100,000 publicly released StyleGAN13

and StyleGAN24 datasets. For StyleGAN3, we synthesized
the images using the released code5 and pre-trained mod-
els6. For all three versions, color images were synthesized
at a resolution of 1024× 1024 pixels and with ψ = 0.5.7

3https://github.com/NVlabs/stylegan
4https://github.com/NVlabs/stylegan2
5https://github.com/NVlabs/stylegan3
6We used the stylegan3-r-ffhq-1024x1024.pklmodel from

the catalog https : / / catalog . ngc . nvidia . com / orgs /
nvidia/teams/research/models/stylegan3.

7The StyleGAN parameter ψ (typically in the range [0, 1]) controls the
truncation of the seed values in the latent space representation used to gen-
erate an image. Smaller values ofψ provide better image quality but reduce
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Figure 2. A representative set of synthetic faces from (a) StyleGAN1, (b) StyleGAN2, (c) StyleGAN3, (d) Generated.photos, and (e) Stable
Diffusion. In order to respect member privacy, we don’t show examples of real profile photos.

A total of 10,000 color images (500 × 500 pixels)
were downloaded from Generated.photos8. These GAN-
synthesized images are generated using a network trained
on a proprietary dataset of tens of thousands of high-quality
images recorded in a photographic studio.

Lastly, 1500 color images were synthesized using Sta-
ble Diffusion [26]. To ensure diversity, fifty faces for each
of 30 demographics with the prompts “a profile photo of a
{young, middle-aged, older} {black, east-asian, hispanic,
south-asian, white} {woman, man}.” The color images
were synthesized at a resolution of 512 × 512 pixels. This
dataset was manually curated to remove obvious synthesis
failures in which, for example, the face was not visible.

Shown in Figure 2 are six representative examples from

facial variety. A mid-range value of ψ = 0.5 produces relatively artifact-
free faces, while allowing for variation in the gender, age, and ethnicity in
the synthesized face.

8https://generated.photos/faces

each of these synthetic-generation categories.
All real and synthesized images are subjected to the same

pre-processing steps: (1) convert to grayscale; (2) resize to
128×128 pixels in size; and (3) auto-scale into the intensity
range [0, 1].

3. Embeddings

As illustrated in Figure 1, we seek a representation (em-
bedding) that captures the spatial alignment common to
StyleGAN faces and uncommon to profile photos. This sec-
tion is partitioned into three parts in which we explore a
simple learned linear embedding based on a principal com-
ponents analysis, a learned embedding based on an autoen-
coder, and for comparison a fixed linear embedding based
on a Fourier analysis. The goal of the latter is to demon-
strate that a generic embedding is not sufficient to distin-
guish synthesized from photographed faces, and that the
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learned embeddings are required to extract sufficiently de-
scriptive representations.

3.1. Learned Linear Embedding

Denote each single-channel, 128 × 128 pixel image as
a 1282 × 1 vector x⃗i. A principal components analysis
(PCA) [6] is used to learn a linear basis from 5000 (one
half of the full data set) synthetically-generated faces sep-
arately from each of the three StyleGAN synthesis engines
(see Section 2). The PCA yields a linear basis where the ith

reconstructed image, denoted as y⃗i, is:

y⃗i =

m∑
j=1

αi,j b⃗j + µ⃗, (1)

where b⃗j are the learned basis vectors, m is the selected
basis dimensionality (typically much smaller than 1282),
αi,j = x⃗Ti · b⃗j is the multiplicative contribution of the jth

basis, and µ⃗ is the mean face across the entire data set sub-
tracted prior to performing the PCA.

With this learned basis, image i is represented as the m-
dimensional vector α⃗i ∈ Rm. We will explore different
basis sizes, but initially consider a size of m = 128.

We expect that a basis learned from only synthetically-
generated faces will accurately capture their structure, while
struggling to capture the structure of real profile photos,
Figure 1(a). This is quantified using the reconstruction error
between an image x⃗i and its low-dimensional reconstruc-
tion y⃗i, measured as the ℓ2-norm: ∥x⃗i − y⃗i∥.

Shown in Figure 3(a-c) is the normalized distribution of
reconstruction errors for 5000 synthetically-generated faces
(distinct from those used to construct the linear basis) from
each of the three StyleGAN synthesis engines and 100,000
real profile photos.

A specified threshold on this reconstruction error can be
used as a simple classifier to distinguish between StyleGAN
and profile photos. With this approach, and with a false
positive rate9 (FPR) of 1%, at a threshold of 10.1 across all
three classifiers, we observe a true positive rate10 (TPR) of
71.7% for StyleGAN1; 82.9% for StyleGAN2; and 79.1%
for StyleGAN3. Interestingly, we see here that as the Style-
GAN faces have improved in photo-realism, they have also
become less variable.

Shown in Figure 3(d) is the same distribution in which
the PCA was performed on a combination of all three Style-
GAN faces. At a threshold of 9.7, we have a TPR of 70.7%
for all StyleGAN faces at the same FPR of 1%. Here we see
a slight reduction in TPR as compared to individual train-
ing.

9False positive rate (FPR) is the fraction of real photos that are incor-
rectly classified as synthetic.

10True positive rate (TPR) is the fraction of synthetic photos that are
correctly classified as synthetic.

(a)

(b)

(c)

(d)

Figure 3. Normalized distributions of image reconstruction error
from a learned linear embedding (PCA) (a-c) trained and evaluated
separately on three versions of StyleGAN and real profile photos
and (d) trained and evaluated on a combination of all three Style-
GAN images.

A classifier based on a threshold on reconstruction error
is attractive due to its simplicity. It is possible, however,
that a classifier based on the underlying low-dimensional
embeddings may afford even better discriminatory power.

To this end, we trained a logistic regression on the
128-D training embeddings (α⃗i) described above. Trained
on the 15,000 combined StyleGAN faces, and with an
80/20 training/testing split, we correctly classify 99.6% of
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Figure 4. The TPR of correctly classifying a StyleGAN3 synthetic
face (with a fixed FPR of 1%) for varying PCA basis size of 8, 16,
32, 64, 128, 256, and 512.

the synthetic faces (TPR) at a 1% FPR. This classifier rep-
resents a significant improvement over the above classifier
based only on reconstruction error. See Table 1 for a sum-
mary of these results.

In the above analysis we, somewhat arbitrarily, fixed the
embedding size to m = 128. Shown in Figure 4 is the
impact of basis size on the TPR with which synthetically-
generated faces can be distinguished from real profile pho-
tos based only on the reconstruction error. For StyleGAN3
and for a fixed FPR of 1%, the TPR increases steadily from
a low of 57.5% for a basis size of m = 8 to a high of 86.0%
for a basis size of m = 512. As compared to a TPR of
79.2% with a basis size of m = 128, there is a clear benefit
to a larger basis size, but from Figure 4 we see that this ben-
efit begins to plateau after a basis of size 256. This pattern
repeats for both StyleGAN1 and StyleGAN2.

3.2. Learned Latent Embedding

With the somewhat surprising efficacy of a simple linear
embedding, we next turn our attention to an autoencoder. In
particular, we employ a three-layer autoencoder with a first
input layer of size 1282 (the image size), a second hidden
layer of size 128 (the same embedding size as that used in
the previous section), and a third output layer of size 1282

(the image size).
The autoencoder is separately trained to reconstruct the

5000 synthetically-generated faces from each of the three
StyleGAN synthesis engines (see Section 2). The autoen-
coder employs a ReLU activation, Adam optimization, an
ℓ2 regularization term of α = 0.0001, and a constant learn-

(a)

(b)

(c)

(d)

Figure 5. Normalized distributions of image reconstruction error
from a learned latent embedding (autoencoder) (a-c) trained and
evaluated separately on three versions of StyleGAN and real pro-
file photos and (d) trained and evaluated on a combination of all
three StyleGAN images.

ing rate of 0.001.
As before, we expect that the autoencoder, trained on

synthetically-generated faces, will accurately capture their
structure, while struggling to capture the structure of real
profile photos, Figure 1(a). This difference is again quanti-
fied using the reconstruction error between an image x⃗i and
its autoencoder reconstruction y⃗i, measured as the ℓ2-norm:
∥x⃗i − y⃗i∥.
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Shown in Figure 5(a-c) is the normalized distribution of
reconstruction errors for 5000 synthetically-generated faces
(distinct from those used to construct train the autoencoder)
from each of the three StyleGAN synthesis engines and
100,000 real profile photos.

A specified threshold on this reconstruction error can
again be used as a simple classifier to distinguish between
StyleGAN and profile photos. With this approach, and with
an FPR of 1%, at a threshold of 12.7, we observe a 79.7%
TPR for StyleGAN1; at a threshold of 13.3, we observe a
92.0% TPR for StyleGAN2; and at a threshold of 12.9, we
observe a 86.0% TPR for StyleGAN3.

Shown in Figure 5(d) is the same distribution in which
the autoencoder was trained on a combination of all three
StyleGAN images. At a threshold of 11.3, we observe a
79.0% TPR for all StyleGAN faces at the same FPR of 1%.
Here again we see a slight reduction in TPR as compared to
individual training.

The TPR from these learned embedding is, on average,
eight percentage points higher than the learned linear em-
bedding (PCA) described in the previous section. See Ta-
ble 1 for a summary of these results.

As in the previous section, we trained a logistic regres-
sion on the 128-D latent representation. Trained on the
15,000 combined StyleGAN faces, and with an 80/20 train-
ing/testing split, we correctly classify 99.5% (TPR) of the
synthetic faces with a 1% FPR. This classifier represents a
significant improvement over the classifier based only on
reconstruction error.

3.3. Fixed Linear Embedding

We showed in the previous two sections that a learned
embedding captures structural similarities of synthetically-
generated faces. In this section, we show that a fixed repre-
sentation is unable to capture such differences, emphasizing
the importance of the specificity of the learning. Although
there are many fixed representations that can be considered,
we consider a standard Fourier-based representation.

Denote each 128 × 128 pixel image as fi(x, y) and its
2D Fourier transform as Fi(ωx, ωy). A brick-wall, low-
pass filter of size 12 × 12 is applied to the complex-valued
Fi(ωx, ωy), followed by an inverse Fourier transform to
yield a low-dimensional (144-D) representation gi(x, y).
The reconstruction error between the original and recon-
struction is measured as the ℓ2-norm: ∥fi(x, y)−gi(x, y)∥.

Shown in Figure 6 is the distribution of reconstruction
errors for StyleGAN3 and real profile photos. Although
the reconstruction errors for the real photos have a longer
tail, this fixed embedding does not afford the same discrim-
inability as the learned embedding (Figure 3 and 5): at a
threshold of 6.8, only 3.5% of StyleGAN3 faces are cor-
rectly classified (TPR) at a 1% FPR. The results are similar
for StyleGAN1 and StyleGAN2 are similar.

Figure 6. Normalized distributions of image reconstruction error
from a fixed linear embedding (Fourier) trained and evaluated on
StyleGAN3 and real profile photos. Unlike the learned represen-
tations, this fixed representation is unable to distinguish synthetic
from real images.

4. Generalization

In the previous sections we showed that low-dimensional
embeddings capture structures common to StyleGAN-
synthesized faces and uncommon to profile photos. Style-
GAN is, of course, only one type of synthetically-generated
face. In this section, we analyze the efficacy of our
StyleGAN-learned latent embedding (autoencoder) to clas-
sify two other categories of synthetically-generated faces
(see Section 2.)

Trained on 5000 StyleGAN3 images (see Section 3.2),
an autoencoder has a 68.2% TPR for generated.photos im-
ages at 1% FPR (real profile photos incorrectly classified as
synthetic). By comparison, we observe a 86.0% TPR for
StyleGAN3 images. Here we see that the classifier some-
what generalizes, but that the classifier is clearly tuned to
specific properties of the StyleGAN training data set.

At the same time, the autoencoder has only a 0.9% TPR
for Stable Diffusion images at 1% FPR. This breakdown
is not surprising since the diffusion-based process does not
rely on the same type of training from aligned faces as the
GAN-based process. This breakdown also highlights that
our earlier results are, in fact, latching onto a specific prop-
erty of GAN-generated faces. See Table 1 for a summary of
these results.

5. Attacks and Defenses

As described in Section 2, our embeddings are extracted
from downsized (to 128 × 128 pixels) and grayscale con-
verted images. Given this relatively low resolution and the
relatively low-dimensional embedding (128-D), it is less
likely that our technique will be vulnerable to laundering
attacks (resizing, trans-coding, additive noise) or adversar-
ial attacks [2].

Our technique, however, may be vulnerable to simple ge-
ometric transformation attacks, which we explore in more
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model classifier training testing TPR
PCA RE StyleGAN1 StyleGAN1 71.7%
PCA RE StyleGAN2 StyleGAN2 82.9%
PCA RE StyleGAN3 StyleGAN3 79.1%
PCA RE StyleGAN(123) StyleGAN(123) 70.7%
PCA LR StyleGAN(123) StyleGAN(123) 99.6%
AE RE StyleGAN1 StyleGAN1 79.7%
AE RE StyleGAN2 StyleGAN2 92.0%
AE RE StyleGAN3 StyleGAN3 86.0%
AE RE StyleGAN(123) StyleGAN(123) 79.0%
AE LR StyleGAN(123) StyleGAN(123) 99.5%

Fourier RE StyleGAN3 StyleGAN3 3.5%
AE RE StyleGAN3 generated.photos 68.2%
AE RE StyleGAN3 Stable Diffusion 0.9%

CNN CNN [29] StyleGAN1 60.1%
CNN CNN [29] StyleGAN2 46.8%
CNN CNN [29] StyleGAN3 9.6%

Table 1. Summary of the rate of correctly identifying synthe-
sized faces (TPR). The model corresponds to principal compo-
nents analysis (PCA), autoencoder (AE), or Fourier. The classifier
corresponds to reconstruction error (RE), logistic regression (LR),
or a state-of-the-art CNN [29]. The FPR for the RE and LE is 1%,
while the FPR for the CNN is 3.3%.

detail here. To this end, we recreated the PCA basis (Sec-
tion 3.2) and retrained the autoencoder (Section 3.2) on
the StyleGAN3 faces, but this time, randomly cropped and
scaled each image. In particular, a central, square bounding
box is extracted by randomly stripping between 0 and 12
pixels from each image edge (top, bottom, left, right). The
cropped image is then rescaled (using bicubic interpolation)
to the original 128× 128 pixels.

For the recreated PCA basis, a threshold on reconstruc-
tion error correctly classifies 22.7% of StyleGAN3 faces
(TPR) while incorrectly classifying 1% of real profile pho-
tos (FPR). This is a significant reduction in TPR compared
to the 79.1% TPR in the absence of cropping and scal-
ing. Similarly, the retrained autoencoder correctly classi-
fies 38.8% of the StyleGAN3 faces (TPR) at the same FPR.
This again is a significant reduction in TPR compared to the
86.0% TPR in the absence of cropping and scaling.

As before, a logistic regression trained on the 128-D
PCA and autoencoder embeddings yields a significant im-
provement in classification to a TPR of 77.9% for PCA and
78.8% for autoencoder at the same 1% FPR. While this is
lower performance than in the absence of cropping and scal-
ing, our approach is somewhat resilient to this geometric
attack.

6. Comparison
The synthetic-image classifier of [29] is a representative

example of a state of the art CNN-based image-forensic
classifier. This classifier is based on a ResNet-50 archi-
tecture pre-trained on ImageNet and then refined to clas-
sify an image as photographic or synthesized. The train-

ing consists of 720,000 training and 4,000 validation im-
ages, half of which are real, the other half of which are
ProGAN [13] synthesized images. The training set is
augmented with standard image manipulations (e.g., blur-
ring, re-compression). With an average reported precision11

greater than 90%, the trained classifier can accurately clas-
sify ProGAN synthesized images, and, impressively, im-
ages from other previously unseen synthesizers.

On our data sets (Section 2), this CNN-based classifier
has a TPR of 60.1% for StyleGAN1, 46.8% for StyleGAN2,
and only 9.6% for StyleGAN3 faces, with a 3.3% FPR (as
compared to our 1% FPR). See Table 1 for a summary of
these results.

Despite operating at a 3× higher FPR, the CNN-based
classifer TPRs are considerably lower than both our simple
reconstruction error and logistic regression based classifiers
for all three StyleGAN datsets. At least one reason for this
may be that the CNN-based classifier was trained to detect
a synthesized image from any category, whereas we focus
exclusively on faces. We also see that while the CNN classi-
fier is somewhat able to detect StyleGAN1 and StyleGAN2
images, it struggles significantly on the most recent Style-
GAN3 images.

7. Discussion
We have shown that a light-weight, low-dimensional

model with relatively minimal training data is highly ef-
fective at distinguishing StyleGAN faces from real profile
faces. Our approach exploits the fact that all three versions
of StyleGAN are trained on cropped and aligned faces,
yielding similarly aligned synthetic faces. It remains to be
seen, however, if next-generation synthesis engines like 3D-
aware GANs [4] or GAN-based text-to-image [28] will ex-
hibit the same facial regularities.

As we were experimenting with the impact of different
sized PCA bases on the performance of using only the re-
construction error as a classifier, we observed a monotonic
improvement in the TPR at fixed FPR for basis sizes be-
tween 8 and 512. Oddly, at a much smaller basis size of
2, 4, and 6, we observed an inversion of this trend with
TPRs of 68.8%, 80%, and 70.3%. These TPRs then dipped
down to 57.5% for a basis size of 8 before steadily climb-
ing to 86.0% for a basis size of 512, as shown in Figure 4.
At the same time, however, a logistic regression trained on
these small PCA representations completely fails to accu-
rately distinguish between synthetic and real faces. We
posit that with the extra small basis sizes, the PCs latch
onto the highly specific eye region (Figure 1). Although
these bases yield relatively high reconstruction errors for

11Precision is TP / (TP+FP), where true positive (TP) is the number of
model predictions where a synthesized image is correctly classified, and
false positive (FP) is the number of model predictions where a real image
is incorrectly classified as synthesized.

890



synthetic faces, the reconstruction errors are even higher for
real profile photos due to the basis specificity. As the basis
size increases to include features other than the eyes, the
reconstruction error reduces quickly for both synthetic and
real faces. As the basis size increases, the discriminability
steadily increases.

The major weakness of our approach is that it is vul-
nerable to a simple cropping attack. However, because
StyleGAN-synthesized images are already fairly tightly
cropped around the face, this attack may yield highly atyp-
ical profile photos that are visually anomalous. Additional
measures may also be applied to counter this attack. In par-
ticular, we have employed only the most basic classifiers
(principal components analysis, autoencoders, and logistic
regression); more sophisticated techniques may be able to
learn scale and translation invariant representations.

Whether it was intentional or not, the regularities found
in StyleGAN faces are a gift to forensic researchers. Given
the potential harms that can come from synthetic media,
synthetic-media researchers should consider the addition of
distinguishing (but not necessarily perceptible) features as
a requirement before broadly deploying their synthesis en-
gines. For example, as described in [32], imperceptible wa-
termarks can be embedded into the training data set after
which the synthesis engine learns to generate content with
the same watermark. Although not a perfect or full-proof
solution, such dataset poisoning would make downstream
forensic detection significantly more reliable.
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