
Practical GAN-based Synthetic IP Header
Trace Generation using NetShare

Yucheng Yin
Carnegie Mellon University

Pittsburgh, PA

yyin4@andrew.cmu.edu

Zinan Lin
Carnegie Mellon University

Pittsburgh, PA

zinanl@andrew.cmu.edu

Minhao Jin
Carnegie Mellon University

Pittsburgh, PA

minhaoj@andrew.cmu.edu

Giulia Fanti
Carnegie Mellon University

Pittsburgh, PA

gfanti@andrew.cmu.edu

Vyas Sekar
Carnegie Mellon University

Pittsburgh, PA

vsekar@andrew.cmu.edu

ABSTRACT

We explore the feasibility of using Generative Adversarial Networks

(GANs) to automatically learn generative models to generate syn-

thetic packet- and flow header traces for networking tasks (e.g.,

telemetry, anomaly detection, provisioning).We identify key fidelity,

scalability, and privacy challenges and tradeoffs in existing GAN-

based approaches. By synthesizing domain-specific insights with

recent advances inmachine learning and privacy, we identify design

choices to tackle these challenges. Building on these insights, we

develop an end-to-end framework, NetShare. We evaluate NetShare

on six diverse packet header traces and find that: (1) across all dis-

tributional metrics and traces, it achieves 46%more accuracy than

baselines and (2) it meets users’ requirements of downstream tasks

in evaluating accuracy and rank ordering of candidate approaches.
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1 INTRODUCTION

Packet- and flow-level header traces are critical to many network

management workflows. For instance, they are used to guide the

design and development of networkmonitoring algorithms (e.g., [44,

45]), to develop new types of anomaly detection and fingerprinting
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(e.g., [34, 76, 77]), and to benchmark and test new hardware and

software capabilities (e.g., [46]). Unfortunately, access to such traces

remains challenging due to business and privacy concerns.

A natural alternative is synthetic traces. There is a rich litera-

ture in the networking community on generating synthetic traces

via simulation-driven approaches (e.g., NS-2 [6]), model-driven ap-

proaches (e.g., Harpoon [66] or Swing [70]), and machine learning

models (e.g., STAN [75], DoppelGANger [39]), as well as commercial

offerings (e.g., IXIA [4]). Unfortunately, existing approaches have

notable shortcomings. Model- and simulation-based approaches

require significant domain knowledge and human effort to deter-

minecriticalworkload featuresandconfiguregenerationparameters,

while not generalizing well across applications [8, 9, 66, 70, 83]. ML-

based approaches generalize more easily, but fail to capture domain-

specific properties (e.g. packet arrival times, flow length) [39, 75] (§6).

In this work, we explore the feasibility of ML-based synthetic

packet-header (e.g., PCAP) and flow-header (e.g., Netflow) trace gen-

eration using Generative Adversarial Networks or GANs [12, 28, 29,

39]. If successful, this can lower the barrier for stakeholders with

key traces to share synthetic data with potential clients. While the

use of GANs is appealing, in practice we find that there are a num-

ber of practical challenges in our context that existing approaches

(e.g., [21, 31, 39, 57, 71, 74, 75]) fail to satisfy:

• Fidelity: Prior techniques (especially those based on tabular

data GANs, which dominate the synthetic header generation

literature) are unable to capture key correlations across header

fields and header fields that have large ranges of values.

• Scalability-fidelity tradeoff: Existing techniques require signif-

icant GPU-hours to train even moderately-sized traces (e.g.,

millions of records). Simple tabular GANs take a few hours

to train but suffer in fidelity, while more complex time series

GANs can take an order of magnitude more time.

• Privacy-fidelity tradeoffs: Privacy-fidelity tradeoffs of GANs

are not well explored in the context of network header traces.

Preliminary work suggests that differentially-private learning

approaches are likely to yield poor fidelity for networking

datasets [39].

For example, DoppelGANger [39], a state-of-the-art GAN-based

approach for time series generation, cannot learn certain key header
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fields (e.g., service ports) well out-of-the-box, while requiring hun-

dreds of GPU hours to train. And while it supports differentially-

private (DP) training [25], this option completely destroys its syn-

thetic data fidelity.

In designingNetShare, we tackle these key challenges by a careful

data-driven understanding of the limitations of canonical GAN-

based approaches. NetShare combines the following key ideas to

address the above issues:

• Reformulation as flow time series generation: Instead of treating

header traces fromeachmeasurement epoch as an independent

tabular dataset (i.e., rows of packets/flows with headers), we

recast the problem for learning synthetic models for amerged

flow-level trace across epochs. This reformulation allows us to

natively capture intra- and inter-epoch correlations.

• Improving scalability via fine tuning:We identify opportunities

to optimize learning time by using ideas ofmodel fine tuning

and data-parallel learning from the ML literature [81]. Doing

so naively may fail to capture dependencies across parallel in-

stances, so we develop heuristics to preserve such correlations.

• Practical privacy reformulations:We adopt recent advances in

differentially-private model training [82] and combine a small

amount of public data with private data to improve privacy-

fidelity tradeoffs. To the best of our knowledge, this is the

first application and empirical demonstration in the context of

header trace generation.

We implement an end-to-end system: NetShare and build a web

service prototype available through https://www.pcapshare.com.

Thecode isopen-sourcedathttps://github.com/netsharecmu/NetShare.

We also tackle a number of other practical challenges that priorwork

has not considered. For instance, prior work does not generate valid

traces (e.g., headers with derived fields, timestamps), does not eval-

uate if/howmodel training generalizes across a wide range of trace

sources (e.g., ISP vs. datacenter vs. edge), and does not consider the

fidelity of the generated traces for relevant networking use cases

(e.g., telemetry, anomaly detection, machine learning).

We empirically evaluate NetShare and show that (1) across all dis-

tributional metrics and traces [1, 2, 16, 47, 51, 59], NetShare achieves

46%more accuracy thanbaseline approaches that use different gener-

ative modeling techniques [21, 31, 57, 71, 74, 75]. (2) NetShare meets

users’ requirements of downstream tasks [19, 22, 44, 45, 77] which

keeps the algorithm accuracy and ordering. (3) NetShare achieves

a better scalability-fidelity tradeoff than baselines. (4) NetShare can

generate higher-quality differentially private traces than baseline

approaches.

2 MOTIVATION

In this section, we start by describing use cases for trace-driven anal-

ysis in networked systems. Then we argue why synthetic traces are

useful and then make a case for data-driven synthesis in contrast to

conventional approaches.

2.1 Motivating scenarios

We describe two illustrative use cases in data-driven network de-

sign and management that are stymied by lack of access to realistic

packet- and flow-level traces.

Fidelity Flexibility Privacy Effort

Raw High � � Low
Anonymized Depends � Depends Low
Synthetic Possible High Possible High

Table 1: Trade-offs for data holders sharing Raw vs.

Anonymized vs. Synthetic traces

Telemetry algorithms. There is a lot of renewed interest in the de-

sign and development of novel telemetry algorithms includingmany

approximate data structures for sketching (e.g., [19, 22, 44, 45]). Sev-

eral of theseapproachesalsomake implicit assumptionsonstructural

properties of workloads (e.g., heavy flows) to optimize space-time

tradeoffs (e.g., [35, 78]). To systematically evaluate which approach

best suits a target deployment or system provisioning regime, we

need realistic header traces to compare different algorithms and

provisioning strategies (e.g., number of rows, counter arrays to use

for sketches).

Evaluatingmachine learningmodels:. There are also a number

of emerging use cases (including building classifiers over encrypted

traffic), where researchers and practitioners (e.g., [34, 63, 76]) are

developing novel machine learning models for various types of fin-

gerprinting (e.g.,what typeof application aparticular session entails)

or anomaly detection (e.g., is this device compromised) using only IP

packet and flow headers [77]. Again, to systematically evaluate the

potential performance rate of these algorithms in diverse settings,

we need access to realistic header traces of normal client behav-

ior [30, 52].

These use cases (and other future scenarios) require access to real-

istic high fidelity traces. The dimensions of fidelity may be use-case

dependent; e.g., some may care about header-field value distribu-

tions, some may care about preserving “heavy hitters”, others may

care about flow-level properties, and so on.

2.2 Synthetic traces and status quo

Due to a number of concerns (e.g., policy, privacy, legal restrictions)

data holders who hold traces are usually unwilling to share raw

traces. To address these concerns, there are two main alternatives to

raw packet traces: (1) Anonymized traces (e.g., using either masking

or cryptographic techniques to hide IP addresses or (2) Synthetic

traces where somemodel of generating packet traces is created to

mimic properties of the rawdata. At a high level, there are qualitative

tradeoffs between raw, anonymized, and synthetic trace generation

as summarized in Table 1. Raw traces require least effort, but are also

least private and least flexible (e.g., generating more data as needed

or changing specific workload characteristics). Anonymized and

synthetic data each have pros/cons in terms of fidelity, flexibility,

privacy, and effort. For example, anonymized data can bemademore

private by obscuring and/or redacting more fields, but this hurts

the resulting data fidelity [50]. Similarly, there are techniques for

generating synthetic data, but the resulting privacy guarantees are

unclear, and remain an active area of research [18, 32, 41]. Our focus

in this paper is on lowering the barrier for generating and sharing

synthetic data since it offers a qualitatively different value proposi-

tion than the other two options and may lower the barrier for data

sharing, as also observed in other efforts (e.g., [39]).
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Existing approaches for synthetic header trace generation be

divided into three categories: (1) Simulation-based (e.g., NS-2 [6],

OSTINATO [7], SEAGULL [9]); (2) Model-driven (e.g., Harpoon [66],

SWING [70]); and (3) Data-driven or machine learning driven (e.g.,

STAN [75]). While these prior efforts have been immensely valuable

to the community, they suffer from one or more fundamental short-

comings. The simulation- andmodel-drivengenerators have twokey

drawbacks. First, system designers need to manually determine the

important set of features and choose themodelwhich requires signif-

icant domain knowledge and human efforts [6, 66, 70]. Second, such

models usually make assumptions about the underlying workloads

and downstream tasks [66, 70] whichmakes them hard to generalize

across traces with potentially significant deployments/topologies/-

workloads. Existing data-driven or machine-learned approaches are

more automated but have more fundamental structural limitations.

For instance, STAN [75] only generate flow-level summary statistics

while HMM-based IP generators [54] only generates IP addresses.

Furthermore, existing frameworks do not evaluate the fidelity of

these synthetic traces across diverse datasets and downstream tasks.

3 OVERVIEWANDCHALLENGES

Our overarching goal is to develop a data-driven synthetic header

trace generation workflow that requires minimal manual tuning

and expert knowledge, and can support a wide range of traces from

diverse deployments and diverse downstream applications. We start

by defining our goals and how we propose to achieve this using a

GAN-based workflow.

3.1 Problem formulation

We are given as input a dataset of header-level traces split into 𝑛
consecutive epochs. For each epoch 𝑡 , we are given𝐷𝑡 � unsampled,

IPv4 packet header trace. These could be packet- or flow-level traces

depending on scenario.

• Packet header trace: Each record in a packet header trace con-

sists of packet header fields (e.g., source/destination IP headers)

associated with somemeasured values (e.g., timestamp, packet

size).

• Flow header trace: Each record in a flow header trace consists of

the IP 5-tuple header (e.g., source/destination IP headers, ports,

and protocol) associated with somemeasured values (e.g., start

time, end time of flow, total number of packets, total number

of bytes).

Scope and goals. Our goal is to learn a generative model of {𝐷𝑡 :

𝑡 =1,2,···,𝑛} that satisfies different types of fidelity metrics specified

by domain experts and downstream applications. We specifically

focus on IPv4 header 5-tuple fields. Packet payloads and other high-

layer headers (e.g., TCP/UDP header, application protocol header)

are outside of the current scope.

We expect three categories of fidelity metrics of interest:

• Header-level distributional properties: For each header

field, we want to ensure the distribution of the synthetic and

raw trace match quantitatively; e.g., popularity rank of IP ad-

dresses or distribution of packet sizes.

• Flow-level properties: Other than per-header (or packet-

level) metrics, flow-level metrics are also common in network-

ing apps [19, 22, 44, 45, 77]: e.g., flow size distribution or flow

duration distribution.

• Use-case specific properties: To ensure the utility of syn-

thetic header traces we consider two use-case specific proper-

ties: (1)Accuracy preservation: Canoneparticular algorithm/ap-

plication achieve similar accuracy on the raw and synthetic

header traces? (2) Order preservation: Is the relative perfor-

mance of algorithms preserved between raw and synthetic

traces; e.g., if Count-Sketch is better for detecting heavy hitters

in real traces, is that ordering preserved?

We alsowant the header traces to satisfy key semantic and syntac-

tic correctness conditions; e.g., IP addresses in valid ranges, packet

sizes in ranges (e.g., TCP packet, the minimum size is 40 bytes, while

for aUDPpacket, theminimumsize is 28bytes); relationshipbetween

port number and protocol (e.g., 80 for HTTP and 53 for DNS).

Non goals. We acknowledge some types of properties are out of

scope for our current work. Specifically, we do not capture stateful

session semantics (e.g., TCP sessions), application layer protocol

semantics (e.g.,HTTPheaders), packet payloads, orfine-grained tem-

poral properties (e.g., distribution of inter-arrival times of packets).

These are interesting directions for future work, as we discuss in §8.

3.2 WhyGANs

Generative adversarial networks (GANs) are a popular class of gener-

ativemodel [27]. Given a set of training data𝑥1,...,𝑥𝑛 , where samples

𝑥𝑖 ∈X belong to universeX and are drawn from some underlying

distribution 𝑥𝑖 ∼ 𝑃𝑥 , the goal is to learn to generate new samples

from𝑃𝑥 . GANs achieve this through adversarial training; that is, they
learn two competing models. The generator maps low-dimensional

random noise to output samples. The discriminator takes as input

either a real training sample or a generated sample, andmust classify

which it is seeing. These two models (usually neural networks), are

trained in alternation to convergence.

GANs have been used with great success in the image domain,

achieving state-of-the-art image and video generation [36, 37]. They

are able to learn both local and global correlations in training data to

produce high-resolution samples. Hence, there is reason to believe

that they may also be good at modeling correlations in network

traffic, which involve both short- and long-term correlations [62].

GANs can be tailored to different types of data, including tabular

data [74] and time series [26, 39, 80].

3.3 Strawman approaches and limitations

We begin by understanding the limitations of canonical GAN-based

architectures in our context before we explain our design choices

to tackle these challenges in the next section.

Strawman solutions. While GANs havemost popularly been used

for generating imagedata, theyhave also beenused to generate struc-

tured tabular data that appear in many application domains [74].

As such, a very natural starting point for using GANs is to treat

packet- or flow-header traces as tabular data (e.g., CTGAN [74]).

Here, each row represents a packet/flowwith columns capturing var-

ious features of interest (e.g., IP addresses, port, packet/byte counts,

timestamp information). Indeed, many existing efforts for extending

GAN to networking contexts (e.g., E-WGAN-GP [57]) adopt this
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approach with some extensions. A recently proposed GAN architec-

ture called DoppelGANger [39] considers other types of metadata-

measurement traces modeled as timeseries. However, it is not clear

if, and how, this work can apply to packet- and flow-header traces.

As a point of reference, we also consider a state-of-art non-GAN

approach called STAN that uses autoregressive neural networks [75].

We defer a full description of these baselines to Section 6.

Challenge 1 (C1): Baselines do not accurately capture header

correlations of packets/flows, e.g., flow length.

100 101 102 103

# of records with the same five tuple

0.88

0.90

0.92

0.94

0.96
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1.00

CD
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CTGAN
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E-WGAN-GP
NetShare

(a) CDF of NetFlow records with

same five tuples (UGR16).
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PacketCGAN
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(b) CDF of flow size (# of packets)

on CAIDA.

Figure 1: Distribution of # of records/packets with the same

five tuples onUGR16 (NetFlow, left) andCAIDA (PCAP, right).

All baselines are missing in Fig. 1b as they don’t generate

flows with >1 packet.

Many downstream tasks (e.g., sketch-based telemetry [19, 22, 44,

45], header-based anomaly detection algorithms [77]) need datasets

to accurately capture properties that span across packets and flows

(e.g., flow size). In the case of packet header traces, we see in Fig. 1b

that the baselines are actually absent in the CDF plot of flow size.

This is because they do not generate multiple packets for the same

flow! This is not surprising as prior GAN-based work has treated

each packet as a record in a tabular database, without timestamps

[21, 31, 71].A similar challenge arisewithflowdata. Long-livedflows

can span multiple measurement epochs, and it is not uncommon to

see flow records spanningmultiple epochs. Moreover, given the way

flow collectors are configured (e.g., inactive timeouts, max time of

flow), the same flow record can also appear multiple times within a

single measurement epoch. As we see in Fig. 1a, baselines either gen-

erate much longer flow records (e.g., CTGAN [74], up to a few thou-

sand) or consistently generate short flows (e.g., E-WGAN-GP [57]).

Challenge 2 (C2): Baselines struggle to accurately capture the

distributions for fields with large support.

The support of a field refers to the possible range of values it

can take. Several of the fields we aim to generate have a large sup-

port, including source/destinations ports, source/destination IPs, and

number of packets/bytes per flow. Fields with extremely small/large

values could indicate a potential anomaly which are crucial to down-

stream tasks e.g., anomaly detection [77]. Unfortunately, existing

GAN-based baselines do not capture such fields well. Consider the

following illustrative examples. In flow-header traces, the “number

of packets per flow” and “number of bytes per flow” can range from

tens for mice flows to hundreds of millions for elephant flows. Fig.
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(a) # of packets per flow
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(b) # of bytes per flow

Figure 2: Distribution of NetFlow’s (unbounded) fields on

UGR16 dataset: left: flow size; right: flow volume.

2 shows that baselines generate a much more limited range and also

miss the correct distribution for small values. As another example,

consider the port number field in headers. Correctly learning the

distribution of port numbers (especially the service ports < 1024)

is key for many measurement tasks (e.g., anomaly detection [77]).

Fig. 3 shows the baselines do not accurately capture the structure

of top-K ports (and nearly miss all of them).
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Figure 3: Top 5 service destination ports in TON (NetFlow):

baselines fail to capture most frequent service ports while

NetShare captures eachmode of them by simpler andmore

effective IP2Vec.

Challenge 3 (C3): ExistingGAN-basedframeworksexhibitpoor

scalability-fidelity tradeoffs on network traces.

In theory, some of these fidelity challenges can be partially ad-

dressedwith larger training datasets, as deep generativemodels gen-

erallyachievebetter resultswithmoreparametersandmoredata [14].

However, this approach quickly encounters scalability challenges.

Fig. 4 shows the trade-offs between scalability and fidelity of base-

lines on a NetFlow dataset (Fig. 4a, Fig. 4b) and a PCAP dataset (Fig.

4c, Fig. 4d).Wemeasure scalability as the totalCPUhours (as opposed

to the wall clock time since multiple machines are used simultane-

ously) and the fidelity as average JS divergence and normalized EMD

across different metrics (refer to Section 6 for details). Simple tabular

approaches (e.g., CTGAN, E-WGAN-GP) use the fewest CPU hours

while achieving worse fidelity due to their modeling assumptions.

We were unable to train the synthetic time series trace generator

DoppelGANger [39] on our datasets due to memory constraints. As

an intermediate design we modified DoppelGANger to include our

proposedmerging and encoding techniques (described in §4), shown

461



102

Training time (CPU hours)

0.10

0.15

0.20

0.25

0.30

0.35

Av
g.

 JS
D

CTGAN
STAN
E-WGAN-GP
NetShare-V0
NetShare

(a) UGR16 (NetFlow) JSD

102

Training time (CPU hours)

0.1

0.2

0.3

0.4

0.5

Av
g.

 n
or

m
al

iz
ed

 E
M

D

CTGAN
STAN
E-WGAN-GP
NetShare-V0
NetShare

(b) UGR16 (NetFlow) EMD

102 103

Training time (CPU hours)

0.2

0.3

0.4

0.5

0.6

Av
g.

 JS
D

CTGAN
PAC-GAN
PacketCGAN
Flow-WGAN
NetShare-V0
NetShare

(c) CAIDA (PCAP) JSD

102 103

Training time (CPU hours)

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 n
or

m
al

iz
ed

 E
M

D

CTGAN
PAC-GAN
PacketCGAN
Flow-WGAN
NetShare-V0
NetShare

(d) CAIDA (PCAP) EMD

Figure 4: Scalability-fidelity trade-offs: Scalability is mea-

sured with total CPU hours (↓) and fidelity is measured with

the average JSD across categorical fields and the average

normalized EMD across continuous fields (↓).
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Figure 5: Privacy-fidelity trade-offs: Privacy ismeasuredwith

(𝜖,𝛿) in DP (↓) and fidelity is measured as average JSD across

categorical fields and the average normalized EMD1across

continuous fields (↓).

as ‘NetShare-V0’ in Figure 4. While this can achieve better fidelity,

it also uses 10x more CPU hours.

Challenge 4 (C4): Existing frameworks exhibit poor

privacy-fidelity tradeoffs.

MostpriorworkonGAN-based tracegenerationdoesnot evaluate

explicit privacymechanisms [21, 31, 57, 71, 74, 75].This is inadequate,

as synthetic data may present privacy concerns [68]. In the prior

work that does explicitly consider privacy [39], the main conclusion

is that differentially-private (DP) training via DP-SGD destroys the

fidelity of generated signals.2 Indeed, we can see in Figure 5 that as

we decrease the DP privacy parameter 𝜖 (lower 𝜖,𝛿 indicate better
privacy; we set 𝛿 = 10−5), synthetic data fidelity is destroyed even
for weak parameters like 𝜖 =106 (which means almost no privacy)

with an average JS divergence up to 0.21 on UGR16 dataset (Fig. 5a).

In other words, even very weak privacy breaks the fidelity. The full

experimental setup of Figure 5 is explained in §6.2, Finding 3.

4 NETSHAREDESIGN

Next, we present the design of NetShare via four high-level insights

in §4.1 with an end-to-end system overview in §4.2.

4.1 High-level insights

Insight 1 (I1):Wereformulateheader trace generationas a time

series generation problem of generating flow records for the

entire trace rather than a per-epoch tabular approach (Fig-

ure 6).

Figure 6: Instead of generating measurement epochs 𝐷𝑖

through a tabular GAN, we merge multiple epochs 𝐷𝑖 into

a giant trace 𝐷 , split the trace into flows 𝐷 𝑓 𝑙𝑜𝑤 , and use

time-series GAN.

As we saw earlier, existing approaches do not learn header field

correlations spanning multiple packets or epochs (e.g., flow size).

The root cause is these approaches treat each packet or flow record

independently and ignore intra- and inter-measurement epoch cor-

relations.

To systematically capture these cross-record correlations, we re-

formulate the header generation problem as a time series generation

problem rather than a tabular generation problem as shown in Fig-

ure 6. Specifically, we begin by merging data from measurement

epochs𝐷𝑖 into one giant trace𝐷 to capture inter-measurement epoch

correlations. Given this giant trace𝐷 , we split it into a set of flows

1For each continuous fields, we normalize the EMDs of all models across all epsilons
to [0.1,0.9].
2We do not argue that DP is necessarily the best or only privacy definition for a network-
ing setting. It is awidely-acceptedmetric in theprivacycommunity [25].At thevery least,
it is natural and desirable to generate DP synthetic data without destroying its fidelity.
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fields/embedding fidelity scalability privacy

IP/byte � �� �
IP/bit � � �

IP/vector �� �� �

port/byte � �� �
port/bit � � �

port/vector �� �� �

Table 2: Encoding tradeoffs for various fields. A ��indicates

(qualitatively) good performance on the metric and �indi-

cates acceptable performance. NetShare uses bit encoding for

IP and embedded vector representation for port numbers.

𝐷 𝑓 𝑙𝑜𝑤 based on five-tuples to explicitly capture flow-level metrics

(e.g., flow size/duration). Each sample in𝐷 𝑓 𝑙𝑜𝑤 has a five-tuple as

metadata, and a record (or “measurement data”) corresponding to a

sequence of packets for PCAPdata andflowrecords forNetFlowdata.

Specifically, for PCAP data, each sequence element (packet) includes

a raw timestamp, packet size, and other IP header fields (we exclude

the IP option field and checksum—detailed reasoning in §4.2); for

NetFlow, each time series element contains flow start time/duration,

packets/bytes per flow, type (attack/benign when applicable).

Finally, we use a time series GAN to model this data. (While au-

toregressive models [75] also use a time series approach, they are

less effective for learning implicit distributions (e.g., flow length

[39]), and achieve worse fidelity (§6).) Specifically, we build on an

open-source tool called DoppelGANger [39]. Note, however, that

natively using a timeseries GAN like DoppelGANger would run into

the same issues as the tabular GANs as each flow or packet record

will be a timeseries record of length 1 and will miss the key cross-

record effects. Furthermore, we will also encounter other challenges

regarding encoding, scalability, and privacy.

As shown in Fig. 1, this merge-split-timeseries generation work-

flow learns a much better flow length distribution compared with

baselines. That said, this increases the computational complexity

of learning, as seen in Figure 4. We revisit this scalability challenge

below.

Insight 2 (I2):Weuse a careful combination of domain knowl-

edge and machine learning to inform the representation of

header fields to balance fidelity-privacy-scalability tradeoffs

(Table 2).

Recall that baselines struggle to accurately learn the distribution

of fields with large support. Hence, instead of training a GAN on the

original data representation,we use domain knowledge to transform

certain fields (especially those with large support) into a format that

is more tractable for GANs.

For fields with numerical semantics like packets/bytes per flow

with a large support, we use log transformation, i.e., log(1+𝑥) to
effectively reduce the range. This simple yet effective technique

helps NetShare achieve a better distribution of large-support fields

than baselines (Fig. 2). For categorical fields like IP address/port

number/protocol, prior work has adopted one or more of the fol-

lowing ideas from the ML literature on feature representation: byte-

encoding [21, 31, 71], bit encoding [74], one-hot encoding [75] or

advanced vector encoding such as IP2Vec [57] which encodes IPs/-

ports/protocols into fixed-length vectors. Unfortunately, these have

been adopted without considering robustness across datasets (e.g.,

number of unique IPs/ports in the dataset), scalability, and privacy.

Indeed, while IP2Vec is conceptually appealing (using tools from

natural language processing [56, 57]), Fig. 3 shows that E-WGAN-GP,

which uses IP2Vec, does not learn the heavy-hitter port distribution.

Table2showsaqualitativeanalysisofdifferentembeddingchoices

for IP/port with respect to fidelity, scalability and privacy. If we look

only at fidelity and scalability, a vector embedding of both IP and

port (using IP2Vec [56] with careful tuning) outperforms other em-

beddings. However, if we consider privacy, this approach does not

work for a subtle reason. The basic idea of IP2Vec is as follows: as in

Word2Vec [49], each five-tuple indexes a sentence, and the sequence

of IPs, ports, and protocol values are words. The collection of five-

tuples is used to build a dictionary where each unique word (IP or

port or protocol) getsmapped to a numeric vector, or embedding. The

generator is trained on these embeddings; upon generating a new

embedding, it is mapped to a word via nearest-neighbor search over

the dictionary. However, the dictionary is training data-dependent

and therefore not DP.

To resolve this issue, we use bitwise encodings of IP addresses

while using IP2Vec to encode only port numbers and protocols; the

embedding was trained on public data (CAIDA backbone trace from

a Chicago collector, 2015), which naturally contains almost every

possible port number and protocol. In addition, the pairs of 〈port

number, protocol〉 are diverse enough to cover the common combi-

nations (e.g., 53 for UDP, 80 for TCP). Hence, the IP2Vec mapping

is expressive enough to capture the words seen in our private data

without violating privacy. As shown in Fig. 3, this variant of IP2Vec

captures the top-K service ports (other results are qualitatively sim-

ilar and not shown for brevity).

Figure 7: We split 𝐷flow into 𝑀 evenly time-spaced chunks

with explicit “flow tags” to capture cross-chunk correlations.

We use the first chunk as a pre-trained model for parallel

training of later chunks.

Insight 3 (I3):We can improve the scalability-fidelity tradeoff

via fine tuning and parallel training (Fig. 7).

Recall that reformulating our problem as timeseries generation

brings much better header/temporal correlations but increases the

total CPU hours. As we can see in Fig. 4, using timeseries GANs to

feed the entire giant trace𝐷flow into the generative model increases

training timeandpotentiallyposes the riskof runningoutofmemory.

One opportunity to improve scalability is via parallelism. How-

ever, naively dividing the giant trace into chunks and parallelizing
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training across chunks poses two limitations. First, we again incur

the risk of losing correlations across chunks,3 e.g., flow size distribu-

tion for flows that spanmultiple chunks. Second,while thewall clock

time decreases the total CPU hours consumed remains the same.

We avoid these limitations as shown in Fig. 7. First, we borrow the

idea of fine tuning from the ML literature, i.e., we use a pre-trained

model as a “warm start” to seed training for future models [53, 82].

Specifically, we use the first chunk as the “seed” chunk to give a

warm-start and subsequent chunks are fine-tuned using the model

trained from the first chunk. This permits parallel training across

chunks. One concern remains regarding the cross-chunk correla-

tions; fine tuningalone cannot preserve these. To this end,weappend

“flow tags” to eachflowheader to capture the inter-chunk correlation.

Specifically, we annotate each flow header with a 0-1 flag denoting

whether it starts in “this” chunk. We append a 0-1 vector after the

flag with length equal to the total number of chunks, with each bit

indicating whether the flow header appears in that specific chunk.

When splitting the giant trace 𝐷flow into chunks, we have two

natural choices: split by fixed time interval or by number of packets

per chunk. Splitting by a fixed number of packets per chunk may

impact differential privacy guarantees, as the presence of any single

packet could change the final trained model in an unbounded way:

removing any packet could change the packet assignment of all fol-

lowing trunks. Thus, we choose to split by fixed time intervals rather

than fixed number of packets. We leave the choice of𝑀 (number of

chunks) as a configurable tradeoff; a higher𝑀 would give fewer total

CPU hours while increasing the learning complexity across chunks.

In our case, we choose𝑀 =10 for each dataset with 1million records.

Figure 8: We use public traces to pre-train a public model

Model𝑝𝑢𝑏𝑙𝑖𝑐 , then fine-tune on private data.

Insight 4 (I4):Wecanimproveprivacy-fidelitytradeoffsbycare-

fully using public datasets (Fig.8).

Prior attempts to trainDP synthetic network datamodels using deep

generative models have utilized DP-SGD, which modifies stochastic

gradient descent (SGD) by clipping each gradient and adding Gauss-

ian noise [11]. For a fixed amount of added noise, the more rounds of

DP-SGDwe run, the greater the cost in privacy budget. In NetShare,

we exploit the observation that one can reduce the number of rounds

of DP-SGD needed to achieve a fixed fidelity level by pre-training

NetShare on a related public dataset; then, we take the learned pa-

rameters from the public dataset, and fine-tune them using DP-SGD

3These chunks are logically independent from the measurement epochs in the original
dataset; chunks are merely a construct for parallelizing training.

over the private dataset. In doing so, we reduce the required number

of iterations of DP-SGD. This insight has been explored in related

work from the DP community [15, 38, 43, 82], but it has not been

utilized in the networking domain to the best of our knowledge.

Figure 5 illustrates that this approach can significantly improve the

privacy-fidelity tradeoff if used judiciously.We describe the nuances

of this approach further in §6.

We also use public data to improve our privacy-fidelity tradeoff

due to our IP2Vec encoding. Specifically, we train our IP2Vec map-

ping on a public dataset with a large number of port/protocol pairs,

which helps us learn an embedding without affecting our DP budget

(details in §4.1, Insight 2).

Figure 9: NetShare: end-to-end overview.

4.2 End-to-end view

Combining the key insights above, our end-to-end design is summa-

rized in Fig. 9.

Pre-processing: (Insight 1) Merge data from differentmeasurement

epochs 𝐷𝑖 into one giant trace 𝐷 with a flow-based split as 𝐷 𝑓 𝑙𝑜𝑤 .

(Insight 2): Encode header fields based on domain knowledge and

fidelity-scalability-privacy tradeoffs.

Training: (Insights 1/3/4) Evenly slice flow traces into𝑀 fixed-time

chunks with explicit flow tags added. Train a time-series GAN for

each chunk;we useDoppelGANger [39] (configuration details inAp-

pendix C). If DP is not required, use themodel from the first chunk as

the pre-trainedmodel to improve scalability-fidelity tradeoff; If DP is

desired, use model pre-trained on public data to fine-tune DP-SGD.

Post-processing: After generating 𝐷
′𝑓 𝑙𝑜𝑤
𝑖 , we map transformed

fields back to their natural representations (e.g., map IP2Vec em-

beddings to 〈port, protocol〉 via nearest-neighbor search). Then,

we generate derived fields (e.g., checksum).4 Finally, we convert

to PCAP/NetFlow dataset by merging packets/NetFlow records ac-

cording to the raw timestamp (for PCAP) or raw flow start time (for

NetFlow).

5 IMPLEMENTATION

We implement a prototype of NetShare with Tensorflow 1.15; DP-

SGD is implemented using tensorflow-privacy 0.5.0 [10]. In the

spirit of reproducible research, we release open source code and de-

tailed documentation at https://github.com/netsharecmu/NetShare.

4We make an explicit design choice to exclude such derived fields, which are likely
intractable to learn automatically. As such, we use a two-step generation mechanism:
(1) use NetShare to generate the native fields (e.g., IP/port/timestamp) and (2) compute
the checksum based on that to ensure the correctness of packets. Additionally, we did
not take into account the option field in the IP header which is rarely used (and we
do not observe the appearance of IP option field in all three PCAP-related datasets).
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We also provide a web service prototype available at https://www.

pcapshare.com.

For consistent runtime measurement, all experiments are run on

the same set of 10 Cloudlab machines [24]. Each machine has Two

Intel Xeon Silver 4114 10-core CPUs at 2.20 GHz and 192GB DDR4

memory.

We pre-define a list of relevant hyperparameters (e.g., learning

rates, discriminator/generator neural network size, rounds of dis-

criminator/generator alternative training).We evaluated 3-5 options

for each hyperparameter, tuned in sequence, prior to running our

evaluation. Hyperparameters were tuned over the full training data,

as data holders can also do this prior to releasing synthetic data.How-

ever, we found that NetShare is not sensitive to these hyperparame-

ters across datasets, andwe used the same configuration in all experi-

ments. Ourmetric for hyperparameter tuning is the relative ordering

of Jensen-ShannonDivergence and EarthMover’s Distance between

the real and synthetic data for various domain-relevant distributions

(details in §6). If downstream tasks are known as a priori, they could

be used as one of the “selection criteria” for picking the best model

among various hyperparameter setups or training snapshots, which

could potentially boost the performance of specific tasks.

We envision data holders sharing the synthetic traces generated

from NetShare rather than the learned model [41].5 We also imple-

ment two optional domain-specific privacy extensions that can be

applied to the generated traces: (1) IP transformationwhich transfers

synthetic IPs to a user-specified range or a default private range; (2)

Specific attributes (e.g., IP addresses/port numbers/protocol) can be

retrained to a user-desired distribution to further protect the privacy.

6 EVALUATION

Next, we evaluate NetShare and compare it to existing ML-based

synthetic trace generators. We start by describing the datasets and

baselines we use.

6.1 Setup

Datasets. In the interest of reproducibility, we select 6 public

datasets (3 flow header, 3 packet header). These traces are diverse

in the deployments, collection logic, and timescales. For flow header

datasets, we consider 11 fields in the flow records: (1) source IP ad-

dress (2) destination IP address (3) source port number (4) destination

port number (5) protocol (6) start time of a flow (7) duration of a

flow (8) number of packets per flow (9) number of bytes per flow (10)

label (if any, benign/attack) (11) attack type (if any, e.g., DoS, brute

force, port scans). For packet header datasets, we consider the IP

header alongwith the packet arrival timestamp and L4 port numbers

(for TCP/UDP only). For each dataset, we evaluate NetShare and

baselines on a dataset of 1 million consecutive samples; this is done

for consistency with the evaluations in prior work.

• Flow traces: (NetFlow-1) UGR16 [47] consists of traffic (in-

cluding attacks) from NetFlow v9 collectors in a Spanish ISP

network. We used data from the third week of March 2016.

The (NetFlow-2) CIDDS [58, 59] dataset emulates a small

business environment with several clients and servers (e.g.,

email, web) with injected malicious traffic was executed. Each

5Sharing the model reveals more information than a finite number of synthetic data
samples. Thus, we posit that in practice stakeholders will be more likely to share
synthetic data rather than the models.

NetFlow entry recorded with the label (benign/attack) and

attack type (DoS, brute force, port scan). The (NetFlow-3)

TON_IoT (TON) dataset [51] represents telemetry IoT sensors.

We use a sub-dataset (“Train_Test_datasets”) for evaluating

cybersecurity-related ML algorithms; of its 461,013 records,

300,000 (65.07%) are normal, and the rest (34.93%) combine nine

evenly-distributed attack types (e.g., backdoor,DDoS, injection,

MITM).

• Packet traces: The (PCAP-1) CAIDA: This dataset [1] contains

anonymized traces from high-speedmonitors on a commercial

backbone link. Our subset is from the New York collector in

March 2018. The (PCAP-2) Data Center (DC) dataset is a

packet capture from the “UNI1” data center studied in the IMC

2010paper [16].The (PCAP-3)CyberAttack (CA): dataset [2]

is traces from The U.S. National CyberWatch Mid-Atlantic

Collegiate Cyber Defense Competitions fromMarch 2012.

Baselines. WecompareNetShare to the state-of-the-artGAN-based

network traffic synthesizers and a recent auto-regressive-based Net-

Flow synthesizer [75].6

• CTGAN [74]: CTGAN is the state-of-the-art GAN for tabular

data. While it is not designed for network traffic, we extend it

in the following way. We encode IP/port into bits with each bit

as a 2-class categorical variable. Other fields are encoded by

data type, e.g., timestamp/packet size are treated as continuous

fields, protocol is categorical. We use CTGAN as a baseline for

NetFlow and PCAP datasets.

• E-WGAN-GP [57]: E-WGAN-GP first extends IP2Vec [56] to

embed all typical fields in a NetFlow record, i.e., IP address/-

port/protocol/pkts per flow/bytes per flow/flow start time/flow

duration into a fixed-length vector. It then trains aWasserstein

GANwith gradient penalty [29].

• STAN [75]: STAN is an autoregressive neural network-based

NetFlow synthesizer that is designed to capture dependency

structures between attributes and across time. STAN groups

NetFlow records by host and only ensures correct marginal dis-

tributionswithin the samehost. To generate data frommultiple

hosts, we randomly draw host IPs from the real data.

• PAC-GAN [21]: PAC-GAN encodes each network packet into

agreyscale imageandgenerates IPpacketsusingConvolutional

Neural Network (CNN) GANs. It does not generate packet

timestamps and there is no natural way to encode them. Hence,

the timestamp is randomly drawn from aGaussian distribution

learned from training data and appended to each synthetic

packet.

• PacketCGAN [71]: PacketCGAN uses conditional GANs to

augment the encrypted traffic datasets which converts each

byte of the packet (including the cleartext header) into one bit

in the vector. It does not generate timestamps, so we append

timestamps to each vector during training.

• Flow-WGAN [31]: Flow-WGAN usesWasserstein GAN [12]

on a byte-level embedding. It generates random IP addresses

and sets amaximumflow and packet length. Flow-WGANdoes

not generate timestamps so we again append a timestamp to

each byte-embedded vector in training.

6Wewere unable to reproduce the PcapGAN[23]work as its details and code are lacking.
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6.2 Key findings

Finding 1:NetShare achieves 46% better fidelity than baselines

on feature distributionmetrics across traces.

SA DA SP DP PR0.0

0.2

0.4

0.6

JS
 d

iv
er

ge
nc

e

CTGAN
STAN
E-WGAN-GP
NetShare

(a) UGR16 (NetFlow) JSD

TS TD PKT BYT0.00

0.25

0.50

0.75

N
or

m
al

iz
ed

 E
M

D CTGAN
STAN
E-WGAN-GP
NetShare

(b) UGR16 (NetFlow) EMD

SA DA SP DP PR0.0

0.2

0.4

0.6

JS
 d

iv
er

ge
nc

e

CTGAN
PAC-GAN
PacketCGAN
Flow-WGAN
NetShare

(c) CAIDA (PCAP) JSD

PS PAT FS0.00

0.25

0.50

0.75

N
or

m
al

iz
ed

 E
M

D CTGAN
PAC-GAN
PacketCGAN
Flow-WGAN
NetShare

(d) CAIDA (PCAP) EMD

Figure 10: Jensen-Shannon divergence (↓) and normalized

EarthMover’s Distance (EMD) (↓) between real and synthetic

distributions on UGR16 (NetFlow) and CAIDA (PCAP).

We evaluate the fidelity of synthetic data by computing distance

metrics between real and synthetic distributions of various packet-

and flow-header fields of interest. The fields include: SA/DA: Rela-

tive frequency of Source IP/Destination IPAddresses ranking from

most- to least-frequent; SP/DP: Source/Destination Port number

distribution (from 0 to 65535); PR: Relative frequency of IP Protocol

(e.g.,TCP/UDP/ICMP). ForNetFlow-specificmetrics,weconsider:TS:

flow start time (inmilliseconds);TD: flow duration (inmilliseconds);

PKT: number of packets per flow;BYT: number of bytes per flow.

For PCAP-specific metrics, we consider: PS: Packet Size (in bytes);

PAT: PacketArrival Time (in milliseconds); FS: Flow Size, number

of packets per flow. For our distance metrics, we follow common

practice in prior work [39, 75]: we use Jensen-Shannon divergence

(JSD) for categorical fields (SA/DA, SP/DP, PR), and Earth Mover’s

Distance (EMD) (also calledWasserstein-1 distance) for continuous

fields (TS, TD, PKT, BYT, PS, PAT, FS).7. Since EMDhas very different

scales for different fields, we normalize the EMDs of each field to

[0.1,0.9] for better visualization in the figures.

Overall, we find that NetShare is 48% better across NetFlow-

related distribution metrics and 41% better across PCAP-related

distribution metrics across various traces. Fig. 10 shows a more

detailed quantitative comparison of NetShare to baselines on two

specific datasets (results on other datasets are qualitatively same,

shown in Appendix A). The overall performance of NetShare is con-

sistently better thanmost baselines. There are cases where NetShare

performs worse than some baselines.

7Some prior work has also used JSD for continuous fields (e.g., [75]) However, to
compute JSD for continuous fields, we need to compute histograms of observed values,
and we find that JSD is very sensitive to the bin size. We hence adopt EMD instead,
as in [39]. EMD has an intuitive geometric meaning: it is equivalent to the integrated
absolute error between the CDFs of the two distributions.

For instance, PAC-GAN appears to achieve perfect packet arrival

time distribution across all datasets (e.g., in Fig. 10d). In hindsight,

this is not surprising aswe explicitly sample packet timestamps from

training data out of band and append it to the synthetic data.

We also confirmed visually that the structure of these distribu-

tions (e.g., CDF and histograms) better match the original raw trace.

We do not show these in the interest of brevity and refer readers to

the illustrative examples presented in §3.3.

Finding 2:NetShare provides betterfidelity for downstreamnet-

workmanagement tasks across different traces.

Wenext evaluatewhetherNetShare synthetic data can be used for

downstream applications that utilize different properties of traffic

traces. We consider 3 tasks: (1) ML-based traffic type prediction on

header data; (2) sketch-based network measurement [19, 22, 44, 45];

and (3) ML-based anomaly detection [77]. For each application, we

evaluate: (1) accuracy preservation (i.e., if an algorithm performs

similarly on real/synthetic data) and (2) order preservation (i.e., if al-

gorithms have the same relative performance on real/synthetic data).

Flow-based traffic type prediction. An important use of la-

beled NetFlow data is to design network traffic type prediction

algorithms [51, 58, 59]. We use the fields port number, protocol,

bytes/flow, packets/flow, and flow duration to predict the type of a

given NetFlow record (e.g., benign/malicious and attack type). We

use five common supervised models: Decision Tree (DT), Logistic

Regression (LR), Random Forest (RF), Gradient Boosting (GB) and

Multi-layer Perceptron (MLP). Fig. 11 describes our evaluation setup.

We use real data𝐴 to generate synthetic data 𝐵 and 𝐵′. Real and syn-

thetic data are sorted by timestamp and split into train:test 80%:20%.

Earlier data is used to train the classifier; later data is used for testing.

Figure 11: NetFlow traffic type prediction setup
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Figure 12: NetFlow traffic type prediction accuracy (↑) onTON:

all classifiers achieve the highest accuracy with synthetic

data generated by NetShare.

We compare the accuracy between training on real (𝐴)/testing
on real (𝐴′) and training on synthetic (𝐵)/testing on real (𝐴′); this

tests the generalization of models trained on synthetic data. Fig. 12
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shows results on TON dataset: real data should achieve the highest

accuracy. NetShare outperforms all baselines across five classifiers.

For example, on the MLP predictor, NetShare achieves 12% higher

accuracy than the next-best baselines (E-WGAN-GP) and 84% of the

real data accuracy.

Table 3: Rank correlation (↑) of prediction algorithms on

CIDDS and TON. Higher is better.

NetShare CTGAN STAN E-WGAN-GP

CIDDS 0.90 0.60 0.60 0.70

TON 0.70 0.10 0.60 -0.60

We compare the rankings of models (Decision Tree, Logistic

Regression, Random Forest, Gradient Boosting, MLP) when they

are trained on real (𝐴)/tested on real (𝐴′) vs. trained on synthetic

(𝐵)/tested on synthetic (𝐵′). We compute Spearman’s rank correla-

tion coefficient between rankings on synthetic and real rankings

(1.00 means a perfect match). Table 3 shows that NetShare outper-

forms all baselines with a higher rank correlation on both CIDDS

and TON datasets.

App #2: Sketch-based network telemetry. A growing body of

work [19, 22, 44, 45] has studied the use of sketch-based network

telemetry.8 We studya typical downstream taskof heavyhitter count

estimation, and choose four common sketching algorithms: Count-

Min Sketch (CMS) [22], Count Sketch (CS) [22], Universal Monitor-

ing [45], NitroSketch [44]. The threshold for heavy hitters is set at

0.1%with all four sketches use roughly the samememory (our goal is

not to compare sketches but to evaluate the value of synthetic traces).

We run the four sketching algorithms on real and synthetic data

to get error rates for heavy hitter count estimation error𝑟𝑒𝑎𝑙 and

error𝑠𝑦𝑛 , which should be equal. We measure their relative error,
|error𝑠𝑦𝑛−error𝑟𝑒𝑎𝑙 |

error𝑟𝑒𝑎𝑙
, for three heavy hitter counts on three datasets:

Destination IP for CAIDA, Source IP for DC, and Five-tuple aggre-

gation for CA. Fig. 13 shows the results on these three datasets. A

baseline may be missing for a dataset if the baseline finds no heavy

hitters according to the given threshold. For each real/synthetic

dataset, every sketching algorithm is independently run 10 times.

NetShare outperforms all valid baselines across different sketch-

ing algorithms/heavy hitters of interest/datasets, achieving 48%

smaller relative errors on average. We compare the rankings of

sketchingalgorithms’meanheavyhitterestimationerror rates, again

using Spearman’s rank correlation coefficient. NetShare achieves

perfect rankings, outperforming the only valid baseline (CTGAN),

whose rank correlation can be as low as 0.4 (not shown for brevity).
App#3:Header-basedanomalydetection. NetML [77] is a recent

open source library for anomaly detection from various flow-based

header representations. We use the default one-class support vector

machine (OCSVM) and the following supported representations (or

“modes") of flows [77]: IAT, SIZE, IAT_SIZE, STATS, SAMP-NUMP

(SN), SAMP-SIZE (SS). We defer readers to NetML [77] for a full

description.

We run different modes of NetML for real and synthetic data,

and get two anomaly ratios: ratio𝑟𝑒𝑎𝑙 and ratio𝑠𝑦𝑛 , which should be

8Sketches uses compact data structures to summarize network traffic.

Table 4: Rank correlation (↑) of modes of NetML for PCAP

anomaly detection.

NetShare CTGAN PAC-GAN PacketCGAN Flow-WGAN

CAIDA 1.00 N/A N/A N/A N/A

DC 0.94 0.43 N/A N/A N/A

CA 0.88 -0.26 0.37 -0.26 N/A

equal. We compute their relative error,
|ratio𝑠𝑦𝑛−ratio𝑟𝑒𝑎𝑙 |

ratio𝑟𝑒𝑎𝑙
. For each

real/synthetic dataset, every mode of NetML is independently run 5

times. Fig. 14 plots the relative errors for different modes on CAIDA,

DC and CA datasets. Note that NetML only processes flows with

packet count greater than one, and only baselines that generate such

flows are presented in the plots.

NetShare outperforms baselines on most datasets and modes of

NetMLwith few exceptions: for mode IAT/SIZE/SS on CA, NetShare

achieves the second-best relative error. However, those baselines

(e.g., CTGAN, PacketCGAN) are neither robust across datasets, nor

do they preserve rankings of NetMLmodes. Also, their average JSD

and normalized EMD across distributional metrics is worse than

NetShare (Fig. 10).

In addition, NetShare outperforms all baselines in terms of pre-

serving the rankings of different modes of NetML. Additionally,

compared with groundtruth ranking, NetShare achieves a perfect

match on CAIDA. Table 4 shows the exact rank correlations on these

three datasets.

Finding 3: Pre-training NetShare on public data can improve

the fidelity of differentially-private traces.

Asdescribed in§4,weaddress thechallengesassociatedwith training

differentially-private (DP) GANs by fine-tuning models trained on

public datasets, only using DP optimization (DP-SGD) on the fine-

tuning steps. Figure 5 shows that this approach can achieve a better

privacy-fidelity tradeoff than thenaive approachof training theGAN

from scratch with DP-SGD; privacy is measured by DP parameter 𝜖
(we fix 𝛿 =10−5), and fidelity is measured as the mean JSD across all

distributions of categorical fields and the mean normalized EMD

across all distributionsof continuousfields.This gain ismoreobvious

whenthepublicdataset is similar to theprivatedata; inFigure5,when

the model is pre-trained on a public header trace from a different

domain, the privacy-fidelity tradeoff is closer to that of training from

scratch. For example, in Figure 5c and Figure 5d, the ‘DP Pretrained-

SAME’ curve was pre-trained on a CAIDA dataset from the Chicago

collector in March 2015, and finetuned on our standard “private"

CAIDA dataset (New York collector, March 2018). Although these

datasets likely see different traffic patterns, they are from the same

domain, andwe observe significant gains in privacy-fidelity tradeoff.

In contrast, the ‘DP Pretrained-DIFF’ curve was pre-trained on the

data center (DC) dataset, and pre-training gives less benefit. This

suggests that pre-training can be effective, but care must be taken to

select sufficiently close pre-training public datasets.

Nonetheless, fine-tuning does not fully resolve the privacy chal-

lenges of training DP GAN-based synthetic data. Table 5 shows that

for a moderate privacy guarantee (𝜖 =24.24), on the CAIDA dataset,

pre-training on a similar public dataset still incurs a 2.3x increase

(degradation) in mean EMD (our fidelity metric). This is better than

467



CMS CS UnivMon NitroSketch
0%

50%

100%

Re
la

tiv
e 

er
ro

r 
(%

)

CTGAN
NetShare

(a) CAIDA (HH: Destination IP)

CMS CS UnivMon NitroSketch
0%

20%

40%

60%

Re
la

tiv
e 

er
ro

r 
(%

)

CTGAN
NetShare

(b) DC (HH: Source IP)

CMS CS UnivMon NitroSketch
0%

25%

50%

75%

Re
la

tiv
e 

er
ro

r 
(%

)

NetShare

(c) CA (HH: Five-tuple)

Figure 13: Relative error (↓) of heavy hitter count estimation by various sketching algorithms on real and synthetic PCAPdatasets.
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Figure 14: Relative error (↓) of anomaly detection by NetMLmodes on real and synthetic PCAP datasets.

𝜖 (𝛿 =10−5) 24.24 27.35 36.28 93.52 641.14 106 108 w/o DP

Naive DP 0.35 0.41 0.51 0.57 0.41 0.31 0.16
0.10

DP-pretrain-SAME 0.23 0.12 0.38 0.11 0.17 0.18 0.16

Table 5: Normalized EMD (↓) between real and DP synthetic

CAIDA data as a function of 𝜖 (expansion of Fig. 5d).

not pre-training, which incurs a 3.5x increase inmean EMD, butmay

still be insufficient for practical purposes.
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Figure 15: Packet length and port CDFs computed without

noise and under the same (𝜖,𝛿) with or without pre-training.

We next show howDP affects the distribution of specific packet-

level queries in the data. Note that prior work [48] has studied how

to build DP analytics pipelines for a pre-specified set of supported

queries, including such packet-level queries. However, a fair compar-

ison to [48] is difficult, as NetShare is tackling a harder problem and

aims to generateDP synthetic data that can handle any type of query.

We conduct two examples of packet-level analysis from [48]:

(1) port numbers and (2) packet length. Figure 15a and Figure 15b

visualize the distribution of the two fields under different privacy

budgets compared with ground truth data. We observe that without

adding noise (i.e., 𝜖 = ∞), NetShare achieves a close match with

the real distribution. However, when adding differential privacy

(e.g., 𝜖 = 24), naive DP-SGD training does not give a satisfactory

distribution. Though pre-training on datasets from the same domain

(“DP-pretrain-SAME”) mitigates these problems, it does not resolve

the issue. In contrast, [48] reported minimal degradation in query

fidelity, even with stronger privacy parameters. Indeed, generating

high-dimensional DP synthetic data remains an open question, both

in our domain and in general [15, 39, 69, 84].

Finding 4:NetShare achieves a better scalability-fidelity trade-

off than baselines.

Recall from §4 that NetShare trains a model by first splitting the

dataset into chunks, then trains a seedGANmodel on the first chunk,

then fine-tunes that model for successive chunks in parallel. This

approach can introduce loss of fidelity, since we are implicitly as-

suming similarity with the first chunk. However, Figure 4 shows

that the resulting scalability-fidelity tradeoff is better than for other

baselines. Here, we summarize fidelity by the average JSD across all

distributional microbenchmarks on categorical fields and the aver-

age normalized EMD across all distributional microbenchmarks on

continuousfields, andefficiencyby thenumberofCPU-hoursneeded

to train the model. Particularly for PCAP datasets, we see almost an

order of magnitude better JSD compared to the next most-efficient

baseline (CTGAN), and almost an order of magnitude faster training

compared to the baseline that is closest in fidelity (DoppelGANger).

7 RELATEDWORK

Synthetic trace generation has a long history in the networking

community. We briefly discuss this related work next.

Network Simulators. Using network simulators to generate traffic

traces [6, 7] entails configuring simulators with a number of param-

eters (e.g., clients, workloads) to ensure these traces match realistic

settings. This requires substantial manual effort to extract parameter
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from traces,which are often incomplete. Further,most simulators are

tied to specific protocols protocols [8, 9, 83] and generalize poorly.

Structural Traffic Generators. A complementary body of trace

generation uses structural or statistical models to represent and gen-

erate network traffic (e.g., [60, 66, 70, 72]). For example, Harpoon

[66] uses a set of distributional parameters extracted from traces

to generate flow level traffic that matches both temporal volume

characteristics and spatial characteristics (source and destination

IP address frequency) of the given trace. Swing [70] extracts key

user/session/connection/network level distributions to reproduce

the network traffic. LitGen [60] uses a renewal process abstraction

to model behavior. Tmix [72] first extracts TCP connection informa-

tion and creates connection vectors to represent the connection to

feed into emulation tools [6]. The key challenge here is to choose

an appropriate model and parameters that achieve high fidelity for

(possibly unforeseen) downstream tasks. These methods implicitly

make assumptions about the workload, which prevents generaliza-

tion. That said, some generators capture stateful and session-level

properties that are currently outside our scope.

Non-GANML-based Traffic Generators. STAN [75] uses autore-

gressive neural models to generate synthetic network traffic in a

flow-level while it fails to generate more fine-grained features such

as individual packet sizes and arrival times within each flow. Red-

zovic et. al [54] uses Hidden Markov Models (HMM) to generate

only packet sizes and packet interarrival time of IP traffic which are

quite limited in the coverage of various packet fields. These are com-

plementary efforts; our work is a systematic application of GANs

building on their success in other domains.

GAN-basedgeneratorsWediscussed anumberofGAN-basedbase-

lines (e.g., [29, 71, 74]) in §6. At a high level, we observe that many

of the architectural choices these prior efforts make (e.g., tabular

data, using IP2vec, encoding packets as images, ignoring temporal

aspects) result in suboptimal fidelity, privacy, and scalability. Net-

Share uses a timeseries GAN like DoppelGANger [39] as a building

block, it does not tackle the specific fidelity, scalability, and privacy

challenges that arise in the context f of header traces. GANs can

also be used to augment imbalanced datasets in intrusion detection

algorithms [64, 73, 79] or for generatingmalicious/adversarial traffic

[20, 42, 55, 76]. While NetShare can be extended to these settings,

this is outside our scope.

Other generativemodels The success of GANs has also inspired a

number of other types of generativemodels for synthetic data gener-

ation such as Denoising Diffusion Probabilistic Models [33, 65] and

score-basedmodels [67]. In general, these are lessmature thanGANs

for synthetic data generation and their fidelity-privacy-scalability

tradeoffs are less well understood. Applying them to the networking

domain is an interesting direction for future work.

8 DISCUSSIONAND FUTUREWORK

While NetShare lowers the barrier for synthetic header trace gen-

eration, it is only a starting point. We conclude with limitations and

directions for further research.

Fine-grained temporal properties. While NetShare may poten-

tially capture fine-grained inter-arrival properties, we do not ex-

tensively evaluate them or related network management tasks (e.g.,

congestion control, buffer provisioning) in this paper. We leave this

for future work.

Extending NetShare to other protocols. NetShare currently op-

erates over Layer 3 IP headers (plus port numbers) .Whilewe believe

NetShare can be extended to support other flow representations (e.g.,

fbflow [61], AWS VPC flows [5]), supporting higher-layer headers

will require supporting stateful protocols (e.g., TCP). The NetShare

architecture does not currently support stateful protocols, and is

unlikely to naturally learn stateful generation. We hypothesize that

supporting stateful protocols will require combining the data-driven

generator with domain-specific protocol rules. This is an interesting

direction for future work.

ExtendingNetSharetootherdownstreamtasks. Evenconstrain-

ing to header traces, our scope of downstream tasks is admittedly

limited. A natural next step is to evaluate the utility in a broader

spectrum of header-based inference tasks; e.g., QoE inference over

encrypted headers, device/application fingerprinting from header

traces, and so on. Looking forward, we also envision new uses for

NetShare including potential avenues for collaborative data augmen-

tation or serving as a toolkit for data holders to contribute to public

domain data repositories (e.g., CAIDA [1], CRAWDAD [3]).

Payload data. NetShare does not currently generate payloads,

which are much higher-dimensional than the headers generated

in this work. We expect that realistic payload generation would be

challenging, and require different techniques; e.g., it may be possible

to train transformer-based language models [17] over payload data.

Measuring overfitting. In the image domain, overfitted generative

models are evaluated by looking for duplicates in the synthetic and

training data [13]. In our domain, thismetric does not apply: amodel

may memorize some fields without memorizing others, and it is

unclear how to measure packet closeness since fields have different

units. Our preliminary analysis by measuring the ratio of overlap

between synthetic and real values of src/dst IPs and 5-tuples) sug-

gests that NetShare is not memorizing (not shown), but finding a

principled way to measure overfitting in the networking domain is

an important question for future work.

EthicalConsiderations. WeevaluatedNetShare onpublic datasets

for reproducibility; this does not raise ethical concerns. In general,

systems like NetShare should be used with care to ensure that the

privacy requirements of the data holder are accounted for as gener-

ative models can memorize and leak individual records [68]. While

training a DP-NetShare mitigates this risk, it may not hide other

aggregate properties of interest. Thus, actual use of such tools must

also take into account data holder’s privacy expectations.
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APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A ADDITIONAL FIDELITY RESULTS
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Figure 16: Jensen-Shannon divergence (↓) and normalized

EarthMover’s Distance (EMD) (↓) between real and synthetic

NetFlow distributions.
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Figure 17: Jensen-Shannon divergence (↓) and normalized

EarthMover’s Distance (EMD) (↓) between real and synthetic

PCAP distributions.

Fig. 16andFig. 17showadditional resultsof Jensen-Shannondiver-

gence between real and synthetic datasets that are not shown in §6:

NetShare is 48%better acrossflow-baseddistributionmetrics and41%

better across packet-based distributionmetrics across various traces.

B PROTOCOL-COMPLIANT

TRACEGENERATION

We also want the packet traces to satisfy key correctness conditions

[57, 75] to be valid packet headers. Specifically,

• Test 1: Validity of IP address. Source IP address should not

be multicast (from 224.0.0.0 to 239.255.255.255) or broadcast

Table 6: Netflow consistency check on UGR16: NetShare can

generate protocol- and domain knowledge-compliant data.

CTGAN STAN E-WGAN-GP NetShare

Test 1 96.90% 90.7% 94.38% 98.05%

Test 2 32.38% 93.64% 38.55% 98.41%

Test 3 99.37% 99.91% 100% 99.90%

Table 7: PCAP consistency check on CAIDA: NetShare can

generate protocol and domain knowledge complaint data.

CTGAN PAC-GAN PacketCGAN Flow-WGAN NetShare

Test 1 95.59% 92.98% 92.81% 94.92% 95.06%

Test 2 67.69% 0.02% 99.16% 61.50% 76.59%

Test 3 70.18% 0.40% 99.16% 61.50% 99.77%

Test 4 99.73% 99.94% 99.49% 99.74% 89.71%

(255.xxx.xxx.xxx); Destination IP address should not be of the

form 0.xxx.xxx.xxx.

• Test 2: Relationship between number of bytes (byt) and

number of packets (pkt). (i) For a TCP flow, 40*pkt ≤ byt

≤ 65535*pkt. (ii) Similarly, for a UDP flow, 28*pkt ≤ byt ≤

65535*pkt.

• Test 3: Relationship between port number and protocol.

If the port number (e.g., 80 for HTTP and 53 for DNS) indicates

one specific type of protocol (TCP/UDP), the protocol field

needs to comply with that.

• Test 4: Packetminimum size (Only valid for PCAP). For

a TCP packet, the minimum size is 40 bytes, while for a UDP

packet, the minimum size is 28 bytes.

Table 6 and Table 7 shows the correctness check results onUGR16

and CAIDA, respectively, with NetShare compared to other base-

lines. Though NetShare does not achieve the highest correctness on

multiple tests, the ratio is still reasonably high. Additionally, base-

lines that occasionally achieve high correctness do not exhibit good

performance in terms of distributional metrics, downstream tasks,

scalability-fidelity and privacy-fidelity trade-offs, as we show in §6,

which significantly degrades the usefulness of the synthetic datasets

generated by baselines.

C IMPLEMENTATIONDETAILS OF NETSHARE

For time-series GAN, we use the open source implementation Dop-

pelGANger[39]availableathttps://github.com/fjxmlzn/doppelGANger

with the following configurations:

• Auto-normalization is disabled.

• Auxiliary discriminator is enabled.

• [0,1] normalization for the continuous fields.

• Packing [40] is not used as it empirically does not help improve

the fidelity in our context.

• The architecture and the loss function remain the same as

DoppelGANger
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